Fighting bacteria with a new genre of antibodies

April 24, 2013
Fighting bacteria with a new genre of antibodies
To cope with bacteria that shrug off existing antibiotics and sterilization methods, scientists have developed a new family of selective anti-microbial agents that do not rely on traditional antibiotics. Credit: iStockphoto/Thinkstock

In an advance toward coping with bacteria that shrug off existing antibiotics and sterilization methods, scientists are reporting development of a new family of selective antimicrobial agents that do not rely on traditional antibiotics. Their report on these synthetic colloid particles, which can be custom-designed to recognize the shape of specific kinds of bacteria and inactivate them, appears in the Journal of the American Chemical Society.

Vesselin Paunov and colleagues point out that many bacteria have developed resistance to existing antibiotics. They sought a new approach—one that bacteria would be unable to elude by mutating into drug-resistant forms. Their inspiration was the antibodies that the immune system produces when microbes invade the body. Those antibodies patrol the body for microbes and bind to their surfaces, triggering a chain of events in which the body's and destroys the microbes.

Paunov's team describes development and successful tests of synthetic colloid particles, called "colloid antibodies." Colloids are materials in which of one material are dispersed in another material. Milk is a colloid in which globules of fat are spread throughout water and other materials. The colloid antibody particles are shells packed with a killing agent. They are designed to recognize and bind to specific bacteria.

Laboratory experiments showed that the colloid antibodies attached to and inactivated only their intended targets without harming other cells. "We anticipate that similar shape selective colloid antibodies can potentially become a powerful weapon in the fight against antibiotic-resistant bacteria," say the researchers. "They can also find applications as non-toxic , preventing growth of in various formulations."

The article is titled "Photothermal Colloid Antibodies for Shape-Selective Recognition and Killing of Microorganisms."

Explore further: Antibodies trick bacteria into killing each other

More information: Photothermal Colloid Antibodies for Shape-Selective Recognition and Killing of Microorganisms, J. Am. Chem. Soc., 2013, 135 (14), pp 5282–5285 DOI: 10.1021/ja400781f

Related Stories

Antibodies trick bacteria into killing each other

November 14, 2011

The dominant theory about antibodies is that they directly target and kill disease-causing organisms. In a surprising twist, researchers from the Albert Einstein College of Medicine have discovered that certain antibodies ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.