Research aims to settle debate over origin of Yellowstone volcano

April 15, 2013

A debate among scientists about the geologic formation of the supervolcano encompassing the region around Yellowstone National Park has taken a major step forward, thanks to new evidence provided by a team of international researchers led by University of Rhode Island Professor Christopher Kincaid.

In a publication appearing in last week's edition of Nature Geoscience, the URI team demonstrated that both sides of the debate may be right.

Using a state-of-the-art plate tectonic laboratory model, they showed that volcanism in the Yellowstone area was caused by severely deformed and defunct pieces of a former mantle plume. They further concluded that the plume was affected by circulation currents driven by the movement of tectonic plates at the Cascades subduction zone.

are hot buoyant upwellings of magma inside the Earth. are regions where dense oceanic tectonic plates dive beneath buoyant . The origins of the Yellowstone supervolcano have been argued for years, with sides disagreeing about the role of mantle plumes.

According to Kincaid, the simple view of mantle plumes is that they have a head and a tail, where the head rises to the surface, producing immense magma structures and the trailing tail interacts with the drifting surface plates to create a chain of smaller volcanoes of progressively younger age. But Yellowstone doesn't fit this typical mold. Among its oddities, its eastward trail of smaller volcanoes called the Plain has a mirror-image , the High Lava Plain, that extends to the west. As a result, detractors say the two opposite trails of volcanoes and the curious north-south offset prove the plume model simply cannot work for this area, and that a plates-only model must be at work.

To examine these competing hypotheses, Kincaid, former graduate student Kelsey Druken, and colleagues at the Australian National University built a laboratory model of the Earth's interior using corn syrup to simulate fluid-like motion of Earth's mantle. The corn syrup has properties that allow researchers to examine complex time changing, three-dimensional motions caused by the collisions of at subduction zones and their effect on unsuspecting buoyant plumes.

By using the model to simulate a mantle plume in the Yellowstone region, the researchers found that it reproduced the characteristically odd patterns in volcanism that are recorded in the rocks of the Pacific Northwest.

"Our model shows that a simple view of mantle plumes is not appropriate when they rise near subduction zones, and that these features get ripped apart in a way that seems to match the patterns in magma output in the northwestern U.S. over the past 20 million years," said Kincaid, a professor of geological oceanography at the URI Graduate School of Oceanography. "The sinking plate produces a flow field that dominates the interaction with the plume, making the plume passive in many ways and trapping much of the magma producing energy well below the surface. What you see at the surface doesn't look like what you'd expect from the simple models."

The next step in Kincaid's research is to conduct a similar analysis of the geologic formations in the region around the Tonga subduction zone and the Samoan Islands in the South Pacific, another area where some scientists dispute the role of mantle plumes.

According to Kincaid, "A goal of geological oceanography is to understand the relationship between Earth's convecting interior and our oceans over the entire spectrum of geologic time. This feeds directly into the very pressing need for understanding where Earth's ocean-climate system is headed, which clearly hinges on our understanding of how it has worked in past."

Explore further: Volcanism in the Mediterranean: A comprehensive view

Related Stories

Volcanism in the Mediterranean: A comprehensive view

March 9, 2007

A new compilation of research illuminates one of Earth's most geologically active areas, where Vesuvius, Etna, and the Eolian and Aegean arcs threaten highly populated regions including the cities of Naples and Catania.

Towards a better understanding of hot spot volcanism

January 31, 2008

Most of the Earth’s listed active volcanoes are located at the borders between two tectonic plates, where upsurge of magma from the mantle is facilitated. When these magmatic uprisings occur at a subduction zone, where ...

Mount Etna's mystery explained?

October 7, 2010

Internationally renowned geophysicist Dr Wouter Schellart has developed the first dynamic model to explain the mystery of the largest and most fascinating volcano in Europe, Mount Etna.

New explanation for Hawaiian hot spot

May 27, 2011

(PhysOrg.com) -- Scientists in the US have suggested that volcanic activity in Hawaii could be fed by a giant hot rock pool 1,000 kilometers west of the islands and in the Earth’s mantle, rather than being fed by a hot ...

New force driving Earth's tectonic plates discovered

July 6, 2011

Bringing fresh insight into long-standing debates about how powerful geological forces shape the planet, from earthquake ruptures to mountain formations, scientists at Scripps Institution of Oceanography at UC San Diego have ...

Plate tectonics modelled realistically

February 23, 2012

Swiss scientists have for the first time succeeded in realistically simulating how an oceanic plate sinks of its own accord under an adjacent plate. At the same time they showed why only one of the plates rather than both ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.