How yeast responds to change: Development of new protocol provides key to measuring complete set of yeast protein levels

Mar 01, 2013
To uncover the fission yeast proteome, an infrared image scanner (top left) is used to simultaneously analyze two fluorescent signals—red and green (center panels). More than 6,000 membrane-mounted samples can be tested at once by the arrayer (bottom right). Credit: 2012 Akihisa Matsuyama, RIKEN Advanced Science Institute

A procedure that allows accurate measurement of the levels of over 99% of the proteins generated by different strains of fission yeast could open the way for new laboratory applications of the species. Researchers should now be able to determine the direct impact of environmental change, life-cycle stage, and gene mutations, deletions and activity on this model organism.

The protocol, developed by Minoru Yoshida and Akihisa Matsuyama of RIKEN's Advanced Science Institute in Wako, together with colleagues from the University of Namur in Belgium, has successfully been manually implemented to study the effect of . The researchers are confident, however, that it could easily be automated.

The advent of high-throughput genome sequencing has meant that complete genome sequences are readily available for many micro-organisms, allowing molecular biologists to deduce their protein sets—known as proteomes. This opens up the possibility of studying the proteome itself, and in particular how protein levels respond to changes in genes, age or the environment.

Fission yeast (Schizosaccharomyces pombe) has become a useful model for human genetic systems because it shares many similar genes and is easy to handle in the laboratory. The approximately 5000-gene fission was first published in 2002, but several significant hurdles have prevented researchers determining accurate levels of all the proteins it generates. One obstacle was the yeast cell wall, which makes it difficult to extract proteins from the cell for analysis. In earlier work, Yoshida and colleagues successfully developed a means of bursting these cell walls to prepare mixtures of the proteins inside.

The new procedure allows comparison of the proteomes of different strains of yeast—typically a normal 'wild-type' strain with a genetic mutant or a strain raised in a specific environment. Specifically, it relies on tagging of open reading frames (ORFs)—the sections of chromosomes where proteins are encoded—with a small tag which is recognized by a fluorescently labeled antibody. The researchers introduced the tags to the strains of interest by means of a 'mass mating' from which only yeast progeny containing tagged ORFs were selected. The level of each protein could then be determined using a fluorescence scanner.

"We are now using the protocol to study the molecular mechanisms of ageing," says Matsuyama. "Proteins whose levels reproducibly alter after the yeast cells stop division can provide us with markers for age."

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Bauer, F., Matsuyama, A., Yoshida, M. & Hermand, D. Determining proteome-wide expression levels using reverse protein arrays in fission yeast. Nature Protocols 7, 1830–1835 (2012). www.nature.com/nprot/journal/v… /nprot.2012.114.html

add to favorites email to friend print save as pdf

Related Stories

Yeast models of cell death and survival mechanisms

Oct 19, 2012

European scientists investigated differences in the genomes of various distantly-related yeast and their effects on cell survival. Results may provide insight into cell death induced by free radicals.

New genetic switch allows cells to thrive in low oxygen

Oct 28, 2011

(PhysOrg.com) -- Johns Hopkins scientists have revealed a new way that cells respond to the challenge of low oxygen. A report on the discovery about how the fission yeast Schizosaccharomyces pombe regulates ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.