How yeast responds to change: Development of new protocol provides key to measuring complete set of yeast protein levels

Mar 01, 2013
To uncover the fission yeast proteome, an infrared image scanner (top left) is used to simultaneously analyze two fluorescent signals—red and green (center panels). More than 6,000 membrane-mounted samples can be tested at once by the arrayer (bottom right). Credit: 2012 Akihisa Matsuyama, RIKEN Advanced Science Institute

A procedure that allows accurate measurement of the levels of over 99% of the proteins generated by different strains of fission yeast could open the way for new laboratory applications of the species. Researchers should now be able to determine the direct impact of environmental change, life-cycle stage, and gene mutations, deletions and activity on this model organism.

The protocol, developed by Minoru Yoshida and Akihisa Matsuyama of RIKEN's Advanced Science Institute in Wako, together with colleagues from the University of Namur in Belgium, has successfully been manually implemented to study the effect of . The researchers are confident, however, that it could easily be automated.

The advent of high-throughput genome sequencing has meant that complete genome sequences are readily available for many micro-organisms, allowing molecular biologists to deduce their protein sets—known as proteomes. This opens up the possibility of studying the proteome itself, and in particular how protein levels respond to changes in genes, age or the environment.

Fission yeast (Schizosaccharomyces pombe) has become a useful model for human genetic systems because it shares many similar genes and is easy to handle in the laboratory. The approximately 5000-gene fission was first published in 2002, but several significant hurdles have prevented researchers determining accurate levels of all the proteins it generates. One obstacle was the yeast cell wall, which makes it difficult to extract proteins from the cell for analysis. In earlier work, Yoshida and colleagues successfully developed a means of bursting these cell walls to prepare mixtures of the proteins inside.

The new procedure allows comparison of the proteomes of different strains of yeast—typically a normal 'wild-type' strain with a genetic mutant or a strain raised in a specific environment. Specifically, it relies on tagging of open reading frames (ORFs)—the sections of chromosomes where proteins are encoded—with a small tag which is recognized by a fluorescently labeled antibody. The researchers introduced the tags to the strains of interest by means of a 'mass mating' from which only yeast progeny containing tagged ORFs were selected. The level of each protein could then be determined using a fluorescence scanner.

"We are now using the protocol to study the molecular mechanisms of ageing," says Matsuyama. "Proteins whose levels reproducibly alter after the yeast cells stop division can provide us with markers for age."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: Bauer, F., Matsuyama, A., Yoshida, M. & Hermand, D. Determining proteome-wide expression levels using reverse protein arrays in fission yeast. Nature Protocols 7, 1830–1835 (2012). www.nature.com/nprot/journal/v… /nprot.2012.114.html

add to favorites email to friend print save as pdf

Related Stories

Yeast models of cell death and survival mechanisms

Oct 19, 2012

European scientists investigated differences in the genomes of various distantly-related yeast and their effects on cell survival. Results may provide insight into cell death induced by free radicals.

New genetic switch allows cells to thrive in low oxygen

Oct 28, 2011

(PhysOrg.com) -- Johns Hopkins scientists have revealed a new way that cells respond to the challenge of low oxygen. A report on the discovery about how the fission yeast Schizosaccharomyces pombe regulates ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

13 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.