Wing flexibility enhances load-lifting capacity in bumblebees (w/ Video)

Mar 28, 2013
Wing flexibility enhances load-lifting capacity in bumblebees
A bumblebee with pieces of glitter stiffening its flexible vein joints. Credit: Andrew Mountcastle

(Phys.org) —New research published today in Proceedings of the Royal Society B demonstrates that the secret of bumblebees' capacity for lifting relatively heavy loads lies in the flexibility of their wings.

Harvard University scientists manipulated the wings of live insects to investigate how wing deformations affected bumblebee aerodynamics. They found that wing flexibility enhances vertical force production, and thus how much weight bees can lift while in flight.

are flexible structures that passively bend and twist during flight. Only recently has insect flight research explored the aerodynamic consequences of flexible wing deformations. However, results from robotic models have contradicted those of computational models on whether wing deformations enhance or diminish aerodynamic force production.

This video is not supported by your browser at this time.

This video is not supported by your browser at this time.

This video is not supported by your browser at this time.

Dr Andrew Mountcastle and his colleagues addressed this question for the first time by manipulating the wings of live bees. They artificially stiffened the wings of by applying a splint (in the form of a piece of glitter) to a flexible vein joint, and carrying out load-lifting tests. They found that wing stiffness decreased the amount of weight the bees could lift.

The bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical force production. This cannot be accounted for by changes in wing kinematics, as flapping frequency and amplitude were unchanged. Thus the team concluded that wing flexibility affects aerodynamic force production in a natural behavioural context; locomotory traits with important ecological implications.

Explore further: Birds 'weigh' peanuts and choose heavier ones

More information: Mountcastle, A. and Combes, S. Wing flexibility enhances load-lifting capacity in bumblebees, Proceedings of the Royal Society B, 27 March 2013.

Related Stories

Artificial butterfly in flight and filmed (w/ Video)

May 20, 2010

A group of Japanese researchers, who publish their findings today in Bioinspiration & Biomimetics, have succeeded in building a fully functional replica model - an ornithopter - of a swallowtail butterfly, and they have f ...

Why don't insect wings break?

Aug 23, 2012

Researchers from Trinity College Dublin have shown that the wings of insects are not as fragile as they might look. A study just published in the scientific journal PLOS ONE now shows that the characteristic networ ...

Recommended for you

Birds 'weigh' peanuts and choose heavier ones

17 hours ago

Many animals feed on seeds, acorns or nuts. The common feature of these are that they have shells and there is no direct way to know what's inside. How do the animals know how much and what quality of food ...

Estuaries protect Dungeness crabs from deadly parasites

May 22, 2015

Parasitic worms can pose a serious threat to the Dungeness crab, a commercially important fishery species found along the west coast of North America. The worms are thought to have caused or contributed to ...

An evolutionary heads-up—the brain size advantage

May 22, 2015

A larger brain brings better cognitive performance. And so it seems only logical that a larger brain would offer a higher survival potential. In the course of evolution, large brains should therefore win ...

Our bond with dogs may go back more than 27,000 years

May 21, 2015

Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ValeriaT
not rated yet Apr 07, 2013
The wing flexibility improves flexing and the portion of drag, induced with Magnus-Robin force during wing rotation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.