Ultra-precision positioning

Mar 25, 2013

A novel rotary actuator provides greater torque, accuracy, and speed.

Ultra-precision positioning is required for the success of many scientific applications, including manufacturing semiconductors, aligning optics and manipulating cells. One of the challenges of ultra-precise positioning is providing sufficient torque through small, precise angles. In a paper accepted for publication in the Review of Scientific Instruments, a journal of the , researchers describe a new rotary actuator that accurately delivers more torque than previous devices.

Like many other ultra-precise rotary actuators, the new device's action is driven by piezoelectric material, which converts electrical signals into mechanical movement. The researchers improved upon previous designs with a clamp that integrates the driving and stopping action and can be moved to different distances from the rotor's center. That gives the researchers both more power and control of the driving forces. Like rotating a , it is easier to control the torque and speed of the wheel by varying both the force as well as the distance from the center that force is applied.

The researchers report approximately four-fold improvements in both maximum loading torque and accuracy over other at the maximum driving frequency of the other devices. While the new device can be driven at higher frequencies, the resulting higher speeds mean less accuracy because the rotor is harder to stop due to the additional of the rotor. The researchers are working on a new clamping design to overcome that limitation.

Explore further: Blu-ray disc can be used to improve solar cell performance

More information: "Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius," is published in the Review of Scientific Instruments. rsi.aip.org/resource/1/rsinak/v84/i1/p015006_s1

add to favorites email to friend print save as pdf

Related Stories

Higher energy yield with torque vectoring gears

Feb 23, 2011

Wind turbines have a problem: Depending on the wind's force, the rotational speed of the turbine and thus of the generator changes. However, alternating current must be fed into the grid with precisely 50 (or 60) hertz. Typically ...

Smart helicopter thanks to active rotor blades

Mar 06, 2013

Active systems in helicopter rotor blades can adapt the blades' aerodynamic properties to local airflow conditions. The use of such systems leads to lower fuel consumption, increased maximum speed and reduced noise and vibration. ...

Philips displays innovative rotary wheel remote controls

Sep 07, 2007

Philips today unveiled their revolutionary new rotary wheel remote control technology for consumer electronic device manufacturers. Designed to enable quick and intuitive navigation of user interfaces & scrolling through ...

Recommended for you

Researcher explores drone-driven crop management

19 hours ago

A flock of pigeons flies over the soybean field where J. Craig Williams is standing. He reaches down and rips off a brown pod from one of the withered plants and splits it open. Grabbing a tiny bean between ...

Wireless electronic implants stop staph, then dissolve

Nov 24, 2014

Researchers at Tufts University, in collaboration with a team at the University of Illinois at Champaign-Urbana, have demonstrated a resorbable electronic implant that eliminated bacterial infection in mice ...

Scientist develops uncrackable code for nuclear weapons

Nov 24, 2014

Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has been awarded the 2015 Surety Transformation Initiative (STI) Award from the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.