New technique to transform precious metal recovery

Mar 06, 2013
New technique to transform precious metal recovery

(Phys.org) —Murdoch University researchers have come up with a new approach to make the recovery of high value precious metals faster and more economically viable.

Dr Chun-Yang Yin and Dr Aleksandar Nikoloski said the rising cost of metals such as platinum and palladium made recovery economically and environmentally vital.

Their technique – which was trialled by extracting platinum and palladium from a spent automotive catalyst leach solution – has shown major advantages over conventional methods.

"Traditional uses a time-consuming two-stage process which sees a mineral leach solution and an extractant vigorously mixed before being transferred to a settler," Dr Yin said.

"The new microfluidics approach is a single-stage process which sees the leach solution and extractant pumped along two very fine micro-channels embedded in a PYREX microchip.

"This nano-level interplay results in increased surface-to-volume ratio and improved metal ion transfer, with 99 per cent of extraction occurring within a single second.

"This really could transform the purification technology for platinum group metals and the niche minerals industry."

Dr Yin said the new technique would not only speed up processing, but would allow companies to significantly reduce plant space as compared to traditional methods.

"Microfluidics is an emerging area of science – and our innovations represent an excellent opportunity for Australian researchers and companies to gain a foothold in the area," Dr Yin said.

"Up until now has been used primarily in the medical and , and has never been applied to industrial . We're one of only a very few groups in the world working in this area."

Dr Yin said the findings represented proof-of-concept and that his group was now interested in partnering with industry to scale up.

He added that the new technique could be ideal for the purification of , which are vital commodities for 'green' technologies such as hybrid cars and novel batteries.

The research is published in the peer-reviewed journal Minerals Engineering.

Explore further: Aromatic couple makes new chemical bonds

Related Stories

Recommended for you

New CMI process recycles magnets from factory floor

8 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

11 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

17 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

20 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

20 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

20 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.