Swarm intelligence: Study uncovers new features of collective behavior when overcrowding sets in

Mar 15, 2013
Flock of birds. Credit: Wikipedia.

Swarming is the spontaneous organised motion of a large number of individuals. It is observed at all scales, from bacterial colonies, slime moulds and groups of insects to shoals of fish, flocks of birds and animal herds. Now physicists Maksym Romenskyy and Vladimir Lobaskin from University College Dublin, Ireland, have uncovered new collective properties of swarm dynamics in a study just published in European Physical Journal B. Ultimately, this could be used to control swarms of animals, robots, or human crowds by applying signals capable of emulating the underlying interaction of individuals within the swarm, which could lead to predicted motion patterns elucidated through modelling.

The authors were inspired by condensed matter models, used for example in the study of magnetism, which were subsequently adapted to be biologically relevant to animal swarms. In their model, in addition to the ability to align with its neighbours, each model animal is endowed with two new features: one for and another preventing direction change at every step to ensure persistence of motion. The team performed computer simulations of up to 100,000 self-propelled particles, each mimicking an individual animal and moving at a constant speed on a plane surface.

They found that when the swarm becomes overcrowded, the globally ordered motion breaks down. At high density and when the nearest neighbours are within one step of each other, each animal can no longer decide on the safe direction of motion. Instead, it is busy correcting its motion to avoid collisions.

They also described, for the first time, a power law that quantifies the average degree of alignment in the direction of motion for animals within the swarm. The law describes how the alignment decays from the centre of the swarm, where animals can best judge the swarm motion due to their maximum number of neighbours, to the periphery.

Explore further: Neutrino trident production may offer powerful probe of new physics

More information: M. Romenskyy and V. Lobaskin (2013), Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition, European Physical Journal B, DOI 10.1140/epjb/e2013-30821-1

Related Stories

Brainless bristlebots found to exhibit swarming behavior

Mar 15, 2013

(Phys.org) —A robot research team at Harvard University has found that tiny robots that move by vibrating bristle strands when grouped together, form spontaneously into groups—exhibiting, what the team ...

Fish follow the rules to school

Nov 07, 2011

The rules of school are simple: it is all about watching the kid nearest to you and making sure you do what they do. Researchers at the mathematics department at Uppsala University, together with biologists at Sydney University ...

Recommended for you

And so they beat on, flagella against the cantilever

36 minutes ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

4 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

6 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0