Swarm intelligence: Study uncovers new features of collective behavior when overcrowding sets in

Mar 15, 2013
Flock of birds. Image: Wikipedia.

Swarming is the spontaneous organised motion of a large number of individuals. It is observed at all scales, from bacterial colonies, slime moulds and groups of insects to shoals of fish, flocks of birds and animal herds. Now physicists Maksym Romenskyy and Vladimir Lobaskin from University College Dublin, Ireland, have uncovered new collective properties of swarm dynamics in a study just published in European Physical Journal B. Ultimately, this could be used to control swarms of animals, robots, or human crowds by applying signals capable of emulating the underlying interaction of individuals within the swarm, which could lead to predicted motion patterns elucidated through modelling.

The authors were inspired by condensed matter models, used for example in the study of magnetism, which were subsequently adapted to be biologically relevant to animal swarms. In their model, in addition to the ability to align with its neighbours, each model animal is endowed with two new features: one for and another preventing direction change at every step to ensure persistence of motion. The team performed computer simulations of up to 100,000 self-propelled particles, each mimicking an individual animal and moving at a constant speed on a plane surface.

They found that when the swarm becomes overcrowded, the globally ordered motion breaks down. At high density and when the nearest neighbours are within one step of each other, each animal can no longer decide on the safe direction of motion. Instead, it is busy correcting its motion to avoid collisions.

They also described, for the first time, a power law that quantifies the average degree of alignment in the direction of motion for animals within the swarm. The law describes how the alignment decays from the centre of the swarm, where animals can best judge the swarm motion due to their maximum number of neighbours, to the periphery.

Explore further: Could 'Jedi Putter' be the force golfers need?

More information: M. Romenskyy and V. Lobaskin (2013), Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition, European Physical Journal B, DOI 10.1140/epjb/e2013-30821-1

Related Stories

Brainless bristlebots found to exhibit swarming behavior

Mar 15, 2013

(Phys.org) —A robot research team at Harvard University has found that tiny robots that move by vibrating bristle strands when grouped together, form spontaneously into groups—exhibiting, what the team ...

Fish follow the rules to school

Nov 07, 2011

The rules of school are simple: it is all about watching the kid nearest to you and making sure you do what they do. Researchers at the mathematics department at Uppsala University, together with biologists at Sydney University ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.