Suicidal bacteria: Biologists study unicellular organisms that occasionally poison themselves with a toxin

March 15, 2013
A typical liquid culture of the cyanobacterium Synechocystis.

The cyanobacterium Synechocystis produces toxins that often lead to its own demise. The biologists Stefan Kopfmann and Prof. Dr. Wolfgang Hess from the University of Freiburg have determined the logic governing this mechanism.. Their findings have been published in the renowned periodicals Journal of Biological Chemistry (JBC) and Public Library of Science (PLoS ONE).

The cyanobacterium Synechocystis produces several toxins. However, most of the time they cannot become active because the usually only produces them together with an antitoxin that neutralizes their poisonous effect. This is a trick of nature: The genes for the toxin and the antitoxin are located together on a plasmid, i.e. a fragment of DNA that exists independently of the actual . In contrast to the toxin, the antitoxin is not very stable. When a cell loses the plasmid during cell division, both of the genes are lost. Since the toxin is more stable than the antitoxin and is thus effective for a longer period of time, these cells eventually die off. Hence, the toxin-antitoxin pairs constitute a natural selection mechanism that sees to it that only cells which retain the plasmid survive.

The plasmid pSYSA of the cyanobacterium Synechocystis has not one but seven different systems of this kind and is thus well protected. The reason for this is because in addition to the genes for the seven toxin-antitoxin pairs, the plasmid pSYSA possesses the for a bacterial immune system. If the plasmid with this system gets lost in cell division, several toxins thus see to it that the is killed. The fact that the genes responsible for it are combined with a high amount of toxin-antitoxin pairs indicates that this system has special significance for the cyanobacterial cell.

Explore further: Bacteria pack their own demise

More information: Kopfmann, S. and Hess, W. Toxin antitoxin systems on the large defense plasmid pSYSA of Synechocystis sp. PCC 6803, Journal of Biological Chemistry. First Published on January 15, 2013, doi: 10.1074/jbc.M112.434100 jbc.M112.434100

Scholtz, I. et al. (2013) CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein. PLoS ONE 8(2): e56470. doi:10.1371/journal.pone.0056470

Related Stories

Bacteria pack their own demise

July 30, 2009

Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them. After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating ...

Turning bacteria against themselves

February 8, 2011

Bacteria often attack with toxins designed to hijack or even kill host cells. To avoid self-destruction, bacteria have ways of protecting themselves from their own toxins.

Bacteria poison themselves from within

March 23, 2011

( -- The research group led by Anton Meinhart at the Max Planck Institute for Medical Research in Heidelberg has shown that proteins from the zeta toxin group trigger a self-destructive mechanism in bacteria. ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.