What's between a slip and a slide? Research leads towards new standards for tennis courts

Mar 27, 2013

Working with the International Tennis Federation and colleagues at the University of Exeter, the team from the University of Sheffield's Faculty of Engineering developed a test machine which applies large forces to a surface to mimic the impact of elite tennis players on tennis courts. This impact can be up to four times the bodyweight of a player.

They used the machine to measure the on an acrylic (hard) court in dry conditions and two artificial clay court surfaces in both wet and dry conditions.

The team found that on clay surfaces the size of the sand particles in the clay affect the friction, particularly when the is wet. With smaller particles, the surface becomes more slippery as it gets wetter, as would be expected. However, with larger particles, the player's grip can actually increase on a wet court, making sliding more difficult.

The research also found why some players are able to slide across acrylic hard courts, a technique that has mostly been reserved for clay. Lead researcher, Dr James Clarke, from Sheffield's Department of Mechanical Engineering, explains: "We found that that if a player is strong and daring enough to apply a high enough force at the right angle, then it's actually easier to start sliding on a hard court than a clay court."

Insufficient, or too much, shoe/surface friction may influence the risk of injury in tennis. The extreme athleticism of today's top players has increased the necessity for playing surfaces with the appropriate level of friction. Only last year Novak Djokovic and Rafael Nadal threatened to boycott the Madrid Masters should the tournament continue to be played on a new blue surface. They complained that it was too slippery, and consequently unsafe.

Principal Investigator Dr Matt Carré, from the Group in the Department of Mechanical Engineering, University of Sheffield says: "The level of friction between the shoe and surface clearly affects the style of play. Understanding what was causes this level of friction can aid in standardising the quality of courts that will ultimately help the players perform better."

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) and is being continued with support from the International Federation. The next step is to link the results from the machine to how players themselves perceive the surface. The aim is to create standards which can be applied internationally to competition surfaces to better inform about the court.

Explore further: Tesla says decision on battery factory months away

Related Stories

Finnish researchers find explanation for sliding friction

May 29, 2012

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin ...

Researchers study tennis grunting effects

Oct 02, 2010

You've heard them at tennis matches - a loud, emphatic grunt with each player's stroke. A University of Hawai'i at Manoa researcher has studied the impact of these grunts and come up with some surprising ...

Six Nations Rugby Union: Were the gloves off?

Mar 18, 2013

As the Six Nations Cup reached its patriotic climax, two University of Sheffield engineers were keeping a closely scientific eye on the ball. Experts in tribology—the science of friction—Drs Roger Lewis and Matt Carré ...

Fingerprints do not improve grip friction

Jun 12, 2009

Fingerprints mark us out as individuals and leave telltale signs of our presence on every object that we touch, but what are fingerprints really for? According to Roland Ennos, from the University of Manchester, ...

Recommended for you

Tesla says decision on battery factory months away

3 hours ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

22 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

23 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

23 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

23 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0