Space weather research to look at energy distribution

Mar 11, 2013
This is a NASA illustration of the effect of solar energy output on the Earth magnetosphere. Credit: NASA

A University of Texas at Arlington physicist has been awarded more than $400,000 in NASA funding to develop a 3D look at how electrodynamic energy from solar winds enters and moves throughout the Earth's upper atmosphere.

Yue Deng, an assistant physics professor, aims to help scientists and engineers protect satellites, power distribution systems and other from the potentially harmful effects of these inevitable bursts of .

Understanding interaction between the Earth's magnetic field, or magnetosphere, and its – known as the thermosphere/ionosphere – is especially important this year and in 2014, Deng said. That's when the Sun is predicted to reach a time of heightened activity or its "."

"Right now, estimation of the amount of energy entering the Earth's thermosphere is not very precise and can be underestimated by 100 percent. We know even less about how that energy is distributed," Deng said. "This information is critical because if you put the same amount of energy at 400 kilometers the impact can be 100 times larger than if you put it at 100 kilometers." Deng received a $408,000, three-year award from NASA's heliophysics division in January. She is co-developer of a new 3-D Global Ionosphere-Thermosphere

Model, or GITM. Deng also is the 2010 recipient of a National Science Foundation Early Career Development or .

"Dr. Deng is a young professor who is already making a valuable contribution to her field, and the NASA award recognizes that," said Pamela Jansma, dean of the UT Arlington College of Science. "By helping the physics community better understand the role that space has on Earth, she is creating a vital new tool."

Co-investigators on the new NASA grant include Arthur Richmond, a senior scientist at the High Altitude Observatory of The National Center for Atmospheric Research (NCAR), and Delores Knipp, a visiting professor at the University of Colorado at Boulder.

is plasma from the Sun that travels through space at about 400 kilometers per second carrying with it a magnetic field. Usually, the Earth's magnetic field protects it from this plasma radiation. Solar flares and other activity on the Sun's surface can increase the energy traveling toward Earth, with some of the radiation passing through the magnetosphere at the Earth's magnetic poles.

Energy entering the thermosphere/ionosphere after a solar storm can wreak havoc on scientists' ability to track the satellites that orbit the Earth in that region, anywhere from about 100 to 500 kilometers above the ground.

Energy bursts from solar flares, coronal mass ejections and similar phenomenon can also disrupt energy distribution systems on Earth, communication technology and affect airline activity. Efforts like the NOAA/NWS Prediction Center have been established to give warnings about upcoming disturbances, so scientists can protect equipment and minimize the damage. But, better information is needed, Deng said.

Deng said the grant team plans to integrate information from several different scientific models and the COSMIC satellite program. They will create a more comprehensive model of how conductivity is distributed through altitudes. The research also will explore the role that Joule heating, or friction heating, and charged particles in the play in . COSMIC is a joint Taiwan/United States science mission for weather, climate, space weather and geodetic research that is entering its sixth year.

Explore further: Rosetta measures comet's temperature

add to favorites email to friend print save as pdf

Related Stories

Shear layers in solar winds affect Earth's magnetosphere

Jul 31, 2012

Human society is increasingly reliant on technology that can be disrupted by space weather. For instance, geomagnetic storms can cause high-latitude air flights to be rerouted, costing as much as $100,000 per flight; induce ...

Night-time view of Aurora

Nov 06, 2012

(Phys.org)—Overnight on October 4-5, 2012, a mass of energetic particles from the atmosphere of the Sun were flung out into space, a phenomenon known as a coronal mass ejection. Three days later, the storm ...

New sunspots producing space weather

Jan 14, 2013

On Jan. 13, 2013, at 2:24 a.m. EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into ...

Solar flares: What does it take to be X-class?

Aug 10, 2011

Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). ...

NASA sees a coronal mass ejection erupt from the sun

Jan 31, 2013

On Jan. 31, 2013 at 2:09am EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory ...

2012: Killer solar flares are a physical impossibility

Nov 11, 2011

(PhysOrg.com) -- Given a legitimate need to protect Earth from the most intense forms of space weather – great bursts of electromagnetic energy and particles that can sometimes stream from the sun – ...

Recommended for you

Rosetta measures comet's temperature

50 minutes ago

(Phys.org) —ESA's Rosetta spacecraft has made its first temperature measurements of its target comet, finding that it is too hot to be covered in ice and must instead have a dark, dusty crust.

How Rosetta arrives at a comet

3 hours ago

After travelling nearly 6.4 billion kilometres through the Solar System, ESA's Rosetta is closing in on its target. But how does a spacecraft actually arrive at a comet?

Lunar occultation of Saturn

3 hours ago

On the night of Monday August 4, mainland Australia will see Saturn disappear behind the moon. It's the third time this year that the moon and Saturn will perfectly line up, as viewed from our part of the ...

SHERLOC to micro-map Mars minerals and carbon rings

5 hours ago

(Phys.org) —An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious ...

NuSTAR celebrates two years of science in space

5 hours ago

(Phys.org) —NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, a premier black-hole hunter among other talents, has finished up its two-year prime mission, and will be moving onto its next phase, ...

User comments : 0