Researchers develop new sensor for methylated DNA

Mar 14, 2013

Collaborators from Mayo-Illinois Alliance for Technology Based Healthcare have developed a new, single molecule test for detecting methylated DNA. Methylation—the addition of a methyl group of molecules to a DNA strand—is one of the ways gene expression is regulated. The findings appear in the current issue of Scientific Reports.

"While nanopores have been studied for genomic sequencing and screening analysis, this new assay can potentially circumvent the need for some of the current processes in evaluating epigenetics-related diseases," says George Vasmatzis, Ph.D., co-leader of Mayo's Biomarker Discovery Program in the Center for Individualized Medicine and co-lead author on the article. He says the assay could eliminate the need for bisulfite conversion of DNA, fluorescent labeling, and (PCR).

"Next steps include increasing the spatial resolution by incorporating thinner membranes and by integrating the same preparation steps," says Rashid Bashir, Ph.D., professor of bioengineering, director of the Micro and Nanotechnology Laboratory, and co-lead author of the study at the University of Illinois at Urbana-Champaign.

A nanopore, in this case, is a very small hole in an artificial membrane, that allows only a single molecule to be located and identified. Researchers say this is useful as methylation in promoter sequences can indicate tumor development in most major types of cancer and may be a better biomarker than many genetic markers. Scientists are now able to differentiate methylated from non-methylated DNA by attaching a protein on the methylated nucleotides measuring ionic electrical current via a solid-state .

Explore further: Gold nanorods target cancer cells

Related Stories

Controlling patterns of DNA methylation

Oct 28, 2011

A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. ...

Nanofluidics sorts DNA for cancer research

May 24, 2012

(Phys.org) -- Cornell nanotechnology researchers have devised a new tool to study epigenetic changes in DNA that can cause cancer and other diseases: a nanoscale fluidic device that sorts and collects DNA, ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.