Evaluating the seismic risk of mineral carbon sequestration

March 15, 2013

Geologic carbon sequestration, in which carbon is captured and stored underground, has been proposed as one way to mitigate the climatic effects of carbon dioxide emissions. One method of geologic carbon sequestration is to inject carbon dioxide in aqueous solution into rocks. However, as the solution fills the pore space in the rocks, the fluid pressure on the rocks increases, potentially increasing the risk of earthquakes.

Another option would be to inject carbon dioxide solutions into mafic rocks; the in these rocks react with the carbon dioxide, leaving solid carbonate reaction products, which decrease the amount of pore fluid.

To determine how mineral carbonation reactions affect seismic risk, Yarushina and Bercovici created a simple model to see how these reactions influence stress on the rock during and after carbon dioxide injection. Their model shows that the chemical reactions reduce fluid pore pressure and distribute stress on the minerals over a larger area.

They conclude that mineral carbonation in mafic rock could minimize the seismic risk of by underground injection as long as fluid pumping rates do not exceed a critical value.

Explore further: Oceans could slurp up carbon dioxide to fight global warming

More information: Mineral carbon sequestration and induced seismicity, Geophysical Research Letters, doi:10.1002/grl.50196, 2013 http://onlinelibrary.wiley.com/doi/10.1002/grl.50196/abstract

Related Stories

Oceans could slurp up carbon dioxide to fight global warming

November 19, 2007

Researchers in Massachusetts and Pennsylvania are proposing a new method for reducing global warming that involves building a series of water treatment plants that enhance the ability of the ocean to absorb carbon dioxide ...

Storing carbon dioxide deep underground in rock form

June 17, 2010

As carbon dioxide continues to burgeon in the atmosphere causing the Earth's climate to warm, scientists are trying to find ways to remove the excess gas from the atmosphere and store it where it can cause no trouble.

One tough microscope

June 3, 2011

When it comes to seeing how carbon dioxide behaves in a geologic storehouse, most instruments can't take the pressure. But, a new apparatus created by scientists at Pacific Northwest National Laboratory, Wright State University ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.


Adjust slider to filter visible comments by rank

Display comments: newest first

1.8 / 5 (4) Mar 15, 2013
A dead technology walking. And all this nonsense just to block the obvious solution: the nuclear option.
not rated yet Mar 20, 2013
What is proposed here is a form of underground pollution. Causing increased damage to the rocks beneath. I was hoping that liquid carbon dioxide (under pressure) would be denser than water and so could push its way down under its own pressure and weight through water. But this is only the case when the temperature is below -20, which will have its own problems freezing the surrounding damp rock instead of pushing out the water.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.