Scientists pave the way toward describing the conformation of proteins that do not have a defined structure

March 27, 2013
Diagram of the protein unfolding in presence of urea. Credit: M Candotti, IRB Barcelona

Researchers with the joint program between IRB Barcelona and the Barcelona Supercomputing Center (BSC) have devised a new strategy to study the shape of proteins.

This study has been led by Modesto Orozco, head of the Molecular Modeling and Bioinformatics Group, and Xavier Salvatella, head of the Molecular Biophysics Group, both ICREA scientists at IRB Barcelona.

According to Orozco, also senior professor of the University of Barcelona and director of the Life Sciences Department at BSC, "by combining computational modeling and experimental physicochemical techniques, we have revealed the , which, until now, were unachievable because of technical barriers". The results are available from today in the electronic version of the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

Developed at IRB Barcelona, this project represents an advance in research. The first author, the Italian PhD student Michela Candotti, says, "knowing the shape that proteins have is essential to perform any analysis. A wire can be a paperclip, a staple or a spring, depending how it is folded". This remark is especially relevant given the multi-functional nature of many proteins.

Scientists pave the way toward describing the conformation of proteins that do not have a defined structure
Graphic showing the enrichment of urea around the protein, favoring its unfolding (urea appears as violet and water as orange). Credit: M Candotti, IRB Barcelona

The study has several scientific implications, which can be summarized in the following three points. First of all, the researchers have described the chemical mechanisms by which compounds such as urea unfold proteins. "This was a debate that started in the 60s, and with this work it can now be considered closed", explains Orozco. Furthermore, they have established a new strategy that will allow them to decipher the conformation of the Intrinsically Disordered Proteins (IDP). IDPs are a group of proteins without a rigid structure that comprise a large part of the ; however, little is known about them. "Our results will contribute to research into diseases that involve IDPs, such as cancer, Parkinson's or Alzheimer", asserts Salvatella. Finally, the scientists have identified the first steps in folding, another topic that is widely contended.

Explore further: New method to study key targets in Alzheimer's disease and prostate cancer

More information: Candotti, M. et al. Towards an atomistic description of the urea-denatured state of proteins, Proceedings of the National Academy of Sciences (PNAS) (2013) online Early Edition the week of March 25.

Related Stories

First-ever high-resolution observations of DNA unfolding

May 20, 2010

The scientists Modesto Orozco, group leader of the Molecular Modelling and Bioinformatics Group at IRB Barcelona, Full Professor of Biochemistry and Molecular Biology at the University of Barcelona and director of the Life ...

First description of a triple DNA helix in a vacuum

April 18, 2012

A team of researchers at the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Supercomputing Center (BSC) have managed for the first time to extract trustworthy structural information from a triple ...

Recommended for you

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...

LiH mediates low-temperature ammonia synthesis

August 24, 2016

Nearly half of the world's population is fed by industrial N2 fixation, i. e., the Harbor-Bosch process. Although exergonic in nature, NH3 synthesis from N2 and H2 catalyzed by the fused Fe has to be conducted at elevated ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
not rated yet Mar 29, 2013
Solubility is not a first step towards the folding of proteins.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.