Designing a better satellite

Mar 29, 2013 by Jeremy Schwab

(Phys.org) —If you have ever plugged your digital camera into your desktop to download photos, then you have used what is known in computing circles as a "plug and play" interface. Basically, plug and play refers to any software program that can recognize many different hardware devices, and interface with them easily.

Plug and play has become ubiquitous in the world of , but it has yet to catch on in some loftier tech , such as . A team of BU , astronomers, , and engineers wants to change this.

Based in the Center for at CAS, the team is composed of over a dozen CAS and ENG students and faculty. The group has been working for over two years to develop a versatile, affordable satellite prototype. In January, they unveiled their creation at the Air Force Research Laboratories (AFRL) in Albuquerque, NM.: a 30-centimeter-wide cube made of 27 smaller cubes latched together, powered by wing-like .

The satellite can easily accommodate a wide range of in its component cubes. The "hub," a stack of computing hardware located in the middle of the satellite, contains software and hardware to command and fly the satellite, as well as manage the data from its . Plug-and-play technology allows the satellite's Command & Data Handling software to read and interface with experiments and instruments that are plugged into the smaller cubes.

The BUSAT program (full name: Boston University Student Satellite for Applications and Training) is an emphatically student-driven initiative. CAS Professor of Astronomy John Clarke, the director of the Center for Space Physics, believes that involving undergraduate and graduate students at the core of research projects should be a more widespread practice.

"This project is a great example of involving students at all levels in current research and development," says Clarke. "Their enthusiasm was impressive to see. This is the kind of activity that universities should be doing."

A smart design

The BUSAT team's low-cost, modular design avoids some of the flaws found in more expensive, customized satellites. For instance, the component cubes fit snugly together using interlocking wedges, or wedge locks. This is significant because the metal bolts that hold together some more expensive satellites have been known to fail under the stresses of orbit.

But the biggest advantage of the modular design, says CAS Professor of Astronomy Ted Fritz, is that it can be modified quickly to meet unforeseen needs.

"You could in days or weeks configure the satellite and get it into orbit," says Fritz, who is the primary investigator on the BUSAT project. "You could quickly plug a new instrument into it, say to meet a battlefield need, and launch it. could be used in other satellites. It has a lot of potential."

Fortunately, research administrators at the U.S. Air Force also see the potential in BUSAT's modular design. The Air Force funded BUSAT's development with a two-year grant as part of a 10-team competition to launch a satellite into space. While the BU team did not win the competition, which ended in January, the team's presentation at the competition's final event captured the attention of administrators at the Air Force Research Laboratories.

Administrators at the AFRL agreed to fund an additional two years of development for BUSAT, at the end of which time the Air Force will decide whether to launch the satellite into orbit.

In awe of the Aurora

The BUSAT team's research goal is to study auroral activity in Earth's atmosphere by recording auroral light intensity in the northern polar region. Team members aim to create 3-D images of the aurora in order to better understand its behavior.

"If you have ever seen the aurora, it makes you very humble," says Fritz, who is also affiliated with the electrical, computer, and mechanical engineering programs at ENG. "You look up and see all those patterns swirling around, and you say to yourself 'I'm trying to explain that as a scientist.'"

Another team of BU researchers, also headed by Fritz and based in the Center for Space Physics, is creating a next-generation version of BUSAT. Using a similar modular design, the ANDESITE project is just getting off the ground. The ANDESITE team has received a two-year Air Force grant and will be competing against nine other design teams to have its satellite launched into orbit. Like BUSAT, ANDESITE will be solar-powered and consist of small cubes. However, the cubes will fly in tight formation rather than being connected to each other. Like BUSAT, ANDESITE will fly through the auroral zone to study the structure of auroras.

To learn more about BUSAT, visit 107.20.150.91/busat/

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Launch delayed for satellite to watch space debris

Jul 06, 2010

(AP) -- The launch of a new U.S. Air Force space surveillance satellite has been delayed due to a software problem in a rocket similar to the one that will lift the satellite into orbit.

Recommended for you

SDO captures images of two mid-level flares

14 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

21 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

23 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

23 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.