Quantum computers counting on carbon nanotubes

Mar 21, 2013
A nanotube (black) can be clamped and excited to vibrate like a guitar string. An electric field (electrodes: blue) ensures that two of the many possible states can be selectively addressed. Credit: Michael J. Hartmann, TUM

Carbon nanotubes can be used as quantum bits for quantum computers. A study by physicists at the Technische Universitaet Muenchen has shown how nanotubes can store information in the form of vibrations. Up to now, researchers have experimented primarily with electrically charged particles. Because nanomechanical devices are not charged, they are much less sensitive to electrical interference.

Using quantum mechanical phenomena, computers could be much more powerful than their classical digital predecessors. Scientists all over the world are working to explore the basis for quantum computing. To date most systems are based on electrically charged particles that are held in an "electromagnetic trap." A disadvantage of these systems is that they are very sensitive to electromagnetic interference and therefore need extensive shielding. Physicists at the Technische Universitaet Muenchen have now found a way for information to be stored and quantum mechanically processed in mechanical vibrations.

Playing a nano-guitar

A that is clamped at both ends can be excited to oscillate. Like a guitar string, it vibrates for an amazingly long time. "One would expect that such a system would be strongly damped, and that the vibration would subside quickly," says Simon Rips, first author of the publication. "In fact, the string vibrates more than a million times. The information is thus retained up to one second. That is long enough to work with."

Since such a string oscillates among many physically equivalent states, the physicists resorted to a trick: an electric field in the vicinity of the nanotube ensures that two of these states can be selectively addressed. The information can then be written and read optoelectronically. "Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group and at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

Explore further: Quantum holograms as atomic scale memory keepsake

More information: Quantum Information Processing with Nanomechanical Qubits, Simon Rips and Michael J. Hartmann, Physical Review Letters, 110, 120503 (2013) DOI: 10.1103/PhysRevLett.110.120503

Related Stories

Smallest vibration sensor in the quantum world

Mar 15, 2013

Carbon nanotubes and magnetic molecules are considered building blocks of future nanoelectronic systems. Their electric and mechanical properties play an important role. Researchers of Karlsruhe Institute ...

Playing quantum tricks with measurements

Feb 15, 2013

A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory—at first glance. The team led by Rainer Blatt reversed a ...

Electromechanics also operates at the nanoscale

May 09, 2011

What limits the behaviour of a carbon nanotube? This is a question that many scientists are trying to answer. Physicists at University of Gothenburg, Sweden, have now shown that electromechanical principles ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

16 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

16 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

17 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (1) Mar 21, 2013
…."Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group Quantum Optics and Quantum Dynamics at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

It seems that technology is a real one, but not for a quantum computer, until we could understand the mystery basic foundation of quantum mechanics! Maybe this physical mechanism could help the matter.
http://www.vacuum...19〈=en