Protein lost in tumors blocks normal cells from being reprogrammed into stem cells

Mar 07, 2013

Researchers from the Icahn School of Medicine at Mount Sinai have discovered that a particular protein prevents normal cells from being reprogrammed into cells that resemble stem cells, providing new insight into how they may lose their plasticity during normal development. This finding has broad-reaching implications for how cells change during both normal and disease development. The data are published this week in Nature Communications.

In a previous study, Emily Bernstein, PhD, and her team at Mount Sinai studied the natural progression of melanoma using mouse and , as well as patient samples, and found that the loss of a specific histone variant called macroH2A, which is a protein that helps package DNA, was directly related to the growth and metastasis of melanoma. In the current study, her team wanted to find out how this molecule might act as a barrier to cellular reprogramming. The importance of cellular reprogramming has been recently highlighted by the winners of the Nobel Prize of Medicine (2012), and explores the capacity of reversing to an early stage of development, the so called embryonic stem cell.

Working with researchers at the University of Pennsylvania, Dr. Bernstein evaluated mice that were genetically engineered to lack macroH2A in comparison to control or "wild-type" mice. They used skin cells from these mice and attempted to reprogram the cells in into . They found that the cells derived from mice without macroH2A were much more plastic, meaning they were more easily reprogrammed into stem-like cells, compared to the wild-type mice. This indicates that macroH2A may block cellular reprogramming by silencing genes required for plasticity.

"This is the first evidence of the involvement of a histone variant protein as an epigenetic barrier to induced pluripotency (iPS) reprogramming," said Dr. Bernstein, who is an Assistant Professor of and Dermatology at the Graduate School of Biomedical Sciences at Mount Sinai, and corresponding author of the study. "These findings help us to understand the progression of different cancers and how macroH2A might be acting as a barrier to tumor development."

Next, Dr. Bernstein and her team plan to create cancer cells in a petri dish by manipulating healthy cells with genetic mutations often associated with cancer, coupled to removal of macroH2A to examine whether the cells are capable of forming tumors.

Explore further: Fighting bacteria—with viruses

Related Stories

Researchers make major breakthrough in melanoma research

Dec 22, 2010

In a breakthrough that could lead to new treatments for patients with malignant melanoma, researchers from Mount Sinai School of Medicine have discovered that a particular protein suppresses the progression of melanoma through ...

Researchers piggyback to safer reprogrammed stem cells

Feb 27, 2009

Austin Smith and his research team at the Centre for Stem Cell Research in Cambridge have just published in the journal Development a new and safer way of generating pluripotent stem cells - the stem cells that can give r ...

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and id ...

Recommended for you

Fighting bacteria—with viruses

16 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

17 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0