Precise distributed multiplexing of 200-Gb/s Nyquist-WDM using fiber frequency conversion

Mar 19, 2013

Fraunhofer Heinrich Hertz Institute (HHI) and Fujitsu Laboratories Ltd. have achieved locally distributed wavelength-division multiplexing with exactly defined frequency spacing. Four Nyquist-shaped 25-GBd quadrature phase-shift keying (QPSK) modulation channels were successfully multiplexed to a 200-Gb/s super-channel. The researchers used optical frequency conversion in nonlinear fiber to realize nearly symbol rate spaced sub-channels.

The first public presentation of this work will be presented at the Optical Fiber Communications Conference (OFC) 2013 held in Anaheim on 21 March 2013.

Bandwidth explosion requires pushing next generation transmission systems to new capacity limits. The more capacity a fiber link can handle, the less fibers are needed to keep up with the increasing traffic demand. For this purpose high , i.e. dense packing of different wavelength channels, is essential.

Coherent-optical orthogonal frequency-division (CO-OFDM) and Nyquist (WDM) maximize the spectral efficiency by packing neighbouring channels at symbol rate spacing. These multiplexing schemes require frequency locking between all carriers at the transmitter to keep the exact frequency spacing and to avoid coherent crosstalk. In distributed multiplexing networks, such remote frequency locking raises a multitude of technical challenges.

To overcome these issues HHI and Fujitsu recently proposed and demonstrated a multiplexing scheme for distributed CO-OFDM which works with independent, free-running lasers and without the need for remote frequency locking.

The key idea is to exploit in a nonlinear fiber to assign locally defined exact frequency spacings to a global map. All contributing lasers are free-running while the proposed scheme does not depend on absolute emission frequencies. Therefore, all network nodes can operate independently.

Nyquist-pulse shaping was combined with the previously demonstrated distributed CO-OFDM scheme. The scheme provided a particular benefit of the inherently exact alignment between the channels which allowed for narrow guard bands between channels. This would not have been possible without HHI's and Fujitsu's new multiplexing technique.

The researchers achieved distributed Nyquist-WDM of four 25-GBd channels carrying single-polarization QPSK at 26-GHz spacing, i.e. with only 4-% frequency guard band. They also emphasized that the scheme is inherently scalable towards even narrower guard bands, limited only by the steepness of the Nyquist spectra.

It is anticipated that this new technology can be applied to the multiplexing/addition optical node for huge numbers/capacity of data signal, which is a key technology for next-generation flexible photonic networks.

HHI and Fujitsu Laboratories will continue their research efforts to develop higher functionality in order to enable practical application of this new technology.

Explore further: Dish Network denies wrongdoing in $2M settlement

add to favorites email to friend print save as pdf

Related Stories

Fiber Optical Transmission In Demand Of Higher Capacity

Apr 02, 2010

(PhysOrg.com) -- With the increasing high volume content over the internet, such as multimedia and high definition images, new transmission methods need to be found to handle the increasing data demand. Nippon ...

New distance record for 400 Gb/s data transmission

Mar 12, 2013

As network carriers debate the next Ethernet standard—and whether transmission speeds of 400 gigabit per second or 1 terabit per second should be the norm—engineers are working on new measures to squeeze ...

Recommended for you

Tech giants look to skies to spread Internet

3 hours ago

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

4 hours ago

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Dish Network denies wrongdoing in $2M settlement

14 hours ago

The state attorney general's office says Dish Network Corp. will reimburse Washington state customers about $2 million for what it calls a deceptive surcharge, but the satellite TV provider denies any wrongdoing.

Netflix's Comcast deal improves quality of video

Apr 14, 2014

Netflix's videos are streaming through Comcast's Internet service at their highest speeds in the past 17 months now that Netflix is paying for a more direct connection to Comcast's network.

New research on gigabit wireless communications

Apr 10, 2014

Research on gigabit wireless communications has been presented by researchers from the University of Bristol at the world's leading wireless communications and networking conference, IEEE WCNC 2014, in Turkey ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...