NRL Nike Laser focuses on nuclear fusion

Mar 20, 2013
This is the Nike Laser -- focal zooming. Credit: U.S. Naval Research Laboratory

Researchers at the U.S. Naval Research Laboratory have successfully demonstrated pulse tailoring, producing a time varying focal spot size known as 'focal zooming' on the world's largest operating krypton fluoride (KrF) gas laser.

The Nike laser is a two to three kilojoule (kJ) KrF system that incorporates beam smoothing by induced spatial incoherence (ISI) to achieve one percent non-uniformity in single beams and 0.16 percent non-uniformity for 44 overlapped target beams. The facility routinely conducts experiments in support of inertial confinement fusion, laser-matter interactions and high physics.

"The development of an energy production system that utilizes is an ongoing process of important incremental steps," said David Kehne, research scientist, NRL Plasma Physics Division. "As such, the use of focal zooming in an inertial fusion energy system is expected to reduce the required laser size by 30 percent, resulting in higher efficiency and lower construction and operating costs."

In the direct-drive inertial confinement fusion (ICF) concept, numerous are used to implode and compress a pea-sized pellet of deuterium-tritium (D-T) to extreme density and temperature, causing the atoms to fuse, resulting in the release of excess energy.

In an ICF implosion, a progressively diminishing portion of the beams will engage the shrinking pellet if the focal spot diameter of the laser remains unchanged. For optimal coupling, it becomes desirable to decrease the laser focal spot size to match the reduction in the pellet's diameter, minimizing wasted energy.

"Matching the focal spot size to the pellet throughout the implosion process maximizes the on-target ," Kehne said. "This experiment validates the engineering of focal zooming in KrF lasers to track the size of an imploding pellet in ."

With single-step focal zooming implemented, the Nike laser provides independent control of pulse shape, time of arrival, and focal diameter allowing greater flexibility in the profiles and pulse shapes that can be produced. The flexibility in pulse shaping provides promising uses in both future experiments and laser diagnosis.

Explore further: Technique for heat-assisted magnetic recording media promises improved writeability for next-generation hard drives

add to favorites email to friend print save as pdf

Related Stories

World’s largest laser picks up the pace

Nov 29, 2007

With their target completion date just a year and a half away, scientists and technicians at the National Ignition Facility (NIF) are quickening their pace to install and test the rest of NIF’s 192 lasers ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

20 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

21 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

User comments : 0