NASA's first laser communication system integrated, ready for launch

Mar 14, 2013 by Dewayne Washington
Lunar Laser Communication Demonstration (LLCD) components integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Credit: NASA

(Phys.org) —A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth.

The terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the and Dust Environment Explorer (LADEE) spacecraft at NASA's Ames Research Center, Moffett Field, Calif. LLCD will demonstrate from to Earth at six times the rate of the best modern-day advanced .

"The successful testing and integration of LLCD to LADEE is a major accomplishment," said Donald Cornwell, LLCD mission manager at NASA's Goddard Space Flight Center in Greenbelt, Md. "It demonstrates that this new technology is robust and ready for space. This is the first time NASA has had such a pass all its tests and be certified flight ready."

The LLCD mission will use a highly reliable infrared laser, similar to those used to bring high-speed data over into our workplaces and homes. Data, sent in the form of hundreds of millions of short pulses of light every second, will be sent by the LADEE spacecraft to any one of three ground telescopes in New Mexico, California and Spain.

The real challenge of LLCD will be to point its very narrow laser beam accurately to ground stations across a distance of approximately 238,900 miles while moving. Failure to do so would cause a dropped signal or loss of communication.

"This pointing challenge is the equivalent of a golfer hitting a 'hole-in-one' from a distance of almost five miles," said Cornwell. "Developers at the Massachusetts Institute of Technology's (MIT) Lincoln Laboratory have designed a sophisticated system to cancel out the slightest spacecraft vibrations. This is in addition to dealing with other challenges of pointing and tracking the system from such a distance. We are excited about these advancements."

The LLCD mission will also serve as a pathfinder for the 2017 launch of NASA's Laser Communication Relay Demonstration (LCRD). That mission will demonstrate the long-term viability of laser communication from a geostationary relay satellite to Earth. In a geostationary orbit the spacecraft orbits at the same speed as Earth, which allows it to maintain the same position in the sky.

Engineers believe that future space missions will be able to use laser communication technology with its low mass and power requirements, to provide increased data quantity for real-time communication and 3-D high-definition video. For example, using S-band communications aboard the LADEE spacecraft would take 639 hours to download an average-length HD movie. Using LLCD technology that time would be reduced to less than eight minutes.

Prior to shipment from MIT, the LLCD spaceflight hardware was subjected to a rigorous set of flight test simulations such as the strong vibrations expected from a Minotaur V rocket, the launch vehicle for the LADEE mission. The LLCD hardware also had to withstand simulated extreme temperatures and other conditions it will experience within the harsh environment of space. Throughout this stringent battery of tests, LLCD maintained its critical alignment and stable pointing accuracy.

Flight and ground station hardware for LLCD was designed and built at Lincoln Laboratory in Lexington, Mass. NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the European Space Agency are developing the ground stations in California and Spain, respectively.

"This is an exciting time for space communications," said Cornwell. "We are about to make a leap in communications ability that is unmatched in NASA's history."

Explore further: A guide to the 2014 Neptune opposition season

add to favorites email to friend print save as pdf

Related Stories

NASA to demonstrate communications via laser beam

Sep 23, 2011

It currently takes 90 minutes to transmit high-resolution images from Mars, but NASA would like to dramatically reduce that time to just minutes. A new optical communications system that NASA plans to demonstrate ...

LADEE closer to exploration of lunar environment

Apr 10, 2012

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) has received its integrated propulsion system that will enable the spacecraft to reach the moon. Achieving this milestone means the LADEE observatory is one step ...

Recommended for you

A guide to the 2014 Neptune opposition season

1 hour ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

19 hours ago

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0