Nanoscale edge variations observed with record-breaking resolution in magnetic nanodevices

Mar 28, 2013
Ferromagnetic resonance force microscopy image of the precession of an edge mode in a 500 nm diameter permalloy disk. The disk appears as a blue region, and the precession of the edge mode appears as a purple peak on the right.

( —A team of researchers from the Royal Institute of Technology, Stockholm, the University of Maryland, and the NIST Center for Nanoscale Science and Technology have measured large variations in the magnetic properties along the edge of a thin film 500 nm-diameter disk. This work represents a significant development in the measurement of magnetic thin film edge properties, which are especially important for nanodevices, such as magnetic memory cells, where the edge to area ratio is large.

The researchers' technique, called force microscopy, detects magnetic resonance in a sample through changes in the magnetic force between the sample and a magnetic cantilever tip. The technique uses an external field from a nearby microwave antenna to excite a magnetic resonance that causes the sample's magnetization to precess, wobbling like a top, billions of times per second. This precession leads to a small decrease in the time-averaged magnetization that can be detected as a change in the on the cantilever. With an external field applied in the plane of the film, modeling predicts that an "edge mode" forms in which the precession is localized to within 30 nm of the edge. The recent measurements profiled that edge mode with a record 100 nm resolution. By rotating the applied field direction, the location of the edge mode is then moved along the circumference of the disk, with changes in the mapping out variations in magnetic properties along the edge.

The researchers believe that continued development of ferromagnetic resonance force microscopy methods will enable measurements of individual magnetic nanodevices, providing important new information about the properties of these devices and their potential defects.

Explore further: Future flexible electronics based on carbon nanotubes: Improving nanotube transistor performance with fluoropolymers

More information: Guo, F., Belova, L. and McMichael, R. Physical Review Letters 110, 017601 (2013).

add to favorites email to friend print save as pdf

Related Stories

New method for imaging defects in magnetic nanodevices

Sep 13, 2012

(—A team of researchers from the NIST Center for Nanoscale Science and Technology, the Royal Institute of Technology, Stockholm, and the University of Maryland have demonstrated a microscopy method ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

23 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

( —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0