Nanoclusters in steel add strength, stability under irradiated conditions

March 6, 2013
EMSL’s LEAP® 4000 atom probe tomography instrument provides a 3-D view of atomic-level physical and chemical interactions in metallic elements, such as the irradiated ODS steels used in this study. The APT work revealed clear images of the nanoclusters for better comparisons. Here, the 14YWT, 100 dpa sample (left) was ion irradiated (450°C), while the 9CrODS sample (right) was neutron irradiated at 500°C.

Safely containing and retarding the mobility of reactor fuels are longstanding U.S. Department of Energy and Department of Defense concerns, making the radiation stability of the materials used for structural components and fuel cladding critically important. In this study, scientists used various analysis tools, including EMSL's atom probe tomography (APT), focused ion beam, and accelerator capabilities, to examine complex oxide nanoclusters within oxide dispersion strengthened, or ODS, steels to determine their potential resistance and stability under a range of irradiation conditions. The complex nanoclusters in ODS steels increase the metal's high-temperature strength, making ODS steel viable for use in nuclear structure or cladding applications.

In this work, two ODS steels—14YWT and 9CrODS—underwent proton, heavy-ion, and neutron irradiations under controlled temperatures. EMSL's sensitive , which works especially well with , can separate a sample's elements and reconstruct them in a three-dimensional visual. This allowed the scientists to calculate and quantify the nanoclusters, showing that irradiation temperature affected cluster size distributions. However, the number of clusters remained constant across the heavy-ion-irradiated conditions (where clusters were detected). This indicates that although collision cascades displace atoms during annealing, no new clusters are nucleating. Thus, if the temperature is high enough, ejected particles diffuse back to the parent cluster, resulting in a stable environment.

In their varied analyses, the scientists determined diffusion also affected both the instability of the nanoclusters at low temperatures, with little or no particle diffusion, and stability at , where diffusion allowed ejected atoms to re-form . Moreover, it showed how ODS steels can offer long-term radiation resistance.

Explore further: Scientists discover how nanocluster contaminants increase risk of spreading

More information: Certain, A. et al. 2013. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. Journal of Nuclear Materials 434(1-3):311-321. DOI: 10.1016/j.jnucmat.2012.11.021

Related Stories

New material for thermonuclear fusion reactors

January 9, 2012

Scientists at Universidad Carlos III de Madrid, Oxford University and the University of Michigan have joined efforts to develop new materials for thermonuclear fusion reactors. Their research focuses on characterization of ...

Understanding of radiation damage LEAPs forward

April 5, 2012

A faint nightclub beat greets visitors to a small room housing the Localized Electron Atom Probe (LEAP). But that’s no stereo cranking out house music; it’s a rhythmic pump cooling a tiny sample to more than 220 ...

Designing materials for the future

June 12, 2012

As energy demands rise, materials scientists are increasingly interested in developing longer-lasting materials for use in the next generation of advanced nuclear and fusion reactors. However, before researchers can think ...

New taxonomy of platinum nanoclusters

February 20, 2013

The unexpected diversity of metallic nanoclusters' inner structure has now been catalogued into families. Physicists have gained new insights into the inner intricacies of the structural variations of metallic nanoclusters. ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.