Researchers alter mosquito genome in step toward controlling disease

Mar 21, 2013
Virginia Tech researchers successfully used a gene disruption technique to change the eye color of a mosquito -- a critical step toward new genetic strategies aimed at disrupting the transmission of diseases such as dengue fever. The varied colors of the eyes of these mosquitoes, modified using TALEN technology, is because of cell-to-cell variability in the degree of gene editing. Credit: Virginia Tech

Virginia Tech researchers successfully used a gene disruption technique to change the eye color of a mosquito—a critical step toward new genetic strategies aimed at disrupting the transmission of diseases such as dengue fever.

Zach Adelman and Kevin Myles, both associate professors of entomology in the College of Agriculture and Life Sciences and affiliated researchers with the Fralin Life Science Institute, study the transmission of and develop novel methods of control, based on genetics.

In a groundbreaking study recently published in the journal PLOS ONE, the scientists used a pair of engineered proteins to cut DNA in a site-specific manner to disrupt a targeted gene in the mosquito genome. Science magazine heralded these transcription activator-like effector nuclease proteins, known as TALENS, as a major scientific breakthrough in 2012, nicknaming them "genomic cruise missiles" for their ability to allow researchers to target specific locations with great efficiency.

While TALENS have been previously used to edit the genomes of animal and human cell cultures, applying them to the mosquito genome is a new approach, according to Adelman.

"Unlike model organisms with large collections of to draw upon, the lack of reverse genetic tools in the mosquito has made it is very difficult to assign functions to genes in a definitive manner," Adelman said. "With the development of this technology, our understanding of the genetic basis of many critical behaviors such as blood-feeding, host-seeking and pathogen transmission should be greatly accelerated."

To test the capability of TALENs to specifically edit the mosquito genome, the scientists designed a pair of TALENS to target a gene whose protein product is essential to the production of eye pigmentation in Aedes aegypti, a mosquito species known for its transmission of the viruses that cause dengue fever.

Using the TALEN pair to edit the gene in the mosquito's germ cells early in development, they were able to change the eye color of a large percentage of the mosquitoes arising in the next generation from black to white.

"To date, efforts to control dengue transmission through genetics have focused entirely on adding material to the mosquito genome. Ensuring that this added material is expressed properly and consistently has been a challenge," Adelman said. "This technology allows us to pursue the same goals, namely, the generation of pathogen-resistant mosquitoes, through subtraction. For example, removing or altering a gene that is critical for pathogen replication."

"Aedes mosquitoes have become increasingly important as vectors of disease from a public health perspective," said George Dimopoulos, a professor of molecular microbiology and immunology at John Hopkins University who was not involved in the study. "The lack of vaccines and drugs for dengue has left the mosquitoes that carry the virus as one of the most promising targets for controlling the disease. A better understanding of how the virus infects the mosquito and other biological properties of the insect will be required to develop intervention strategies that can block virus transmission by the mosquito. The ability to genetically engineer mosquitoes is essential for the study of such biological functions. The TALEN-based system in mosquitoes that that was developed by Dr. Adelman provides this important capacity."

Explore further: Efficient genetic editing: Scientists develop new system that could be used to treat a host of genetic conditions

Related Stories

Brazil to breed GM mosquitoes to combat dengue

Jul 10, 2012

Brazil said Monday it will breed huge numbers of genetically modified mosquitoes to help stop the spread of dengue fever, an illness that has already struck nearly 500,000 people this year nationwide.

Scientists engineer mosquito immune system to fight malaria

Dec 22, 2011

Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Recommended for you

Breaking down DNA by genome

5 hours ago

New DNA sequencing technologies have greatly advanced genomic and metagenomic studies in plant biology. Scientists can readily obtain extensive genetic information for any plant species of interest, at a relatively low cost, ...

Identifying the source of stem cells

Oct 30, 2014

When most animals begin life, cells immediately begin accepting assignments to become a head, tail or a vital organ. However, mammals, including humans, are special. The cells of mammalian embryos get to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.