Microstructures made of adjoining semiconductor disks could lead to powerful nanoscale sensors

Mar 27, 2013
Semiconductors: Touching moments with a radiant outcome
Terahertz radiation is greatly enhanced in the tiny V-shaped gap, just a fraction of a micrometer wide, between pairs of touching semiconductor disks. Credit: 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Many users of microwave ovens have had the frightening experience of leaving a fork, crumpled piece of aluminum foil or some other pointy metal item inside the cooking chamber. The sharp metal object acts as an antenna for the oven's microwave radiation, causing strong local heating or sparking. Jing Hua Teng from the A*STAR Institute of Materials Research and Engineering (IMRE) and colleagues in Singapore and the UK have now observed a similar antenna effect, involving a different sort of electromagnetic radiation—known as terahertz (THz) radiation—in a microfabricated semiconductor structure. Their discovery could find application in areas ranging from biosensing to airport security scanners.

Teng and his co-workers developed tiny semiconductor structures made of the chemical elements indium and antimony. From this material, they produced disks of 20 micrometers in diameter, which they arranged such that pairs just touched. The gap between contiguous disks was merely tens to hundreds of nanometers wide (see image). When the researchers exposed the structures to THz radiation, they found that the radiation intensity in the gap was enhanced by more than a hundred times.

Confining and enhancing is significant for two reasons, according to Teng. First, electromagnetic waves in the THz range can be used in a broad range of applications, for example, to study the structure of large biomolecules. As this sort of radiation can penetrate textiles but is less energetic than X-rays—or microwaves—it is also well suited for use in at airports. The second reason as to why the new results are important is more fundamental. "We have produced this particular touching-disk structure to test, in the THz regime, intriguing theoretical predictions made for ," explains Teng. "Building a device such as ours for visible light is much more challenging, as it would involve even smaller structures."

The now-verified theoretical predictions came from collaborators at Imperial College London in the UK. "For the present work, IMRE is in charge of the materials growth and the structure fabrication, while Imperial College contributes structure design and characterization," says Teng. The A*STAR researchers are now focused on practical applications: they will further explore the unique properties of their semiconductor materials and try to develop devices for THz technology. The group has already succeeded in tuning the THz response of their structure, meaning that they can conveniently adjust the frequency response of their device for different applications.

Explore further: Negative electronic compressibility: More is less in novel material

More information: Hanham, S. et al. Broadband terahertz plasmonic response of touching InSb disks. Advanced Materials 24, OP226–OP230 (2012). onlinelibrary.wiley.com/doi/10.1002/adma.201202003/abstract

Deng, L. et al. Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings. Advanced Optical Materials 1, 128–132 (2013). onlinelibrary.wiley.com/doi/10.1002/adom.201200032/abstract

Related Stories

Photonics: strong vibrations

May 10, 2012

A new approach to generating terahertz radiation will lead to new imaging and sensing applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening ...

Terahertz imaging goes the distance

Apr 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Checking people at airports -- with terahertz radiation

Sep 18, 2008

Within the last few years the number of transport checks – above all at airports – has been increased considerably. A worthwhile effort as, after all, it concerns the protection of passengers. Possibilities for new and ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.