Microscale medical sensors inserted under skin can be powered wirelessly by external handheld receiver

Mar 27, 2013
Biomedical engineering: No batteries required
A handheld reader (top right) wirelessly powers and interrogates a tiny blood-pressure sensor embedded inside a prosthetic graft, inserted in this case as a conduit for haemodialysis in a patient with kidney failure. Credit: 2013 A*STAR Institute of Microelectronics

Implantable electronic devices potentially offer a rapid and accurate way for doctors to monitor patients with particular medical conditions. Yet powering such devices remains a fundamental challenge: batteries are bulky and eventually need recharging or replacing. Jia Hao Cheong at the A*STAR Institute for Microelectronics, Singapore, and his co-workers are developing an alternative approach that eliminates the need for a battery. Their miniature devices are based on wireless power-transfer technology.

The research team has developed a microscale to monitor blood flow through . Surgeons use these prosthetic grafts to bypass diseased or clogged blood vessels in patients experiencing restricted blood supply, for example. Over time, however, the graft can also become blocked. To avoid complete failure, blood flow through the graft must be monitored regularly, but existing techniques are slow and costly.

These limitations prompted the researchers to develop a bench-top prototype of a device that could be incorporated inside a graft to monitor blood flow. The implant is powered by a handheld external reader, which uses inductive coupling to wirelessly transfer energy, a technology similar to that found in the latest wireless-charging mobile phones. The team developed an application-specific, integrated circuit for the implant designed for low power use (see image).

The incoming energy powers circuits in the device that control sensors based on silicon . This material is piezoresistive: as blood flows over the sensor the associated induce a measurable increase in , proportional to the flow pressure.

Key to the success of the device is its ability to work with a very limited power supply. Most of the incoming energy is absorbed by skin and tissue before it can reach the implant, which may be inserted up to 50 millimeters deep.

"Our flow achieves an ultra-low power consumption of 12.6 microwatts," Cheong says. For example, the sensor transmits its data to the handheld reader passively, by backscattering some of the incoming energy. "We have tested our system with 50-millimeter-thick tissue between the external coil and implantable coil, and it successfully extracted the pressure data from the implantable device," he adds.

Cheong and his co-workers' tests showed that the prototype sensor was also highly pressure sensitive, providing pressure readings with a resolution of 0.17 pounds per square inch (1,172 pascals). "The next step of the project is to integrate the system and embed it inside a graft for [an experimental] animal," Cheong says.

Explore further: Students design 'nested' dumpster to slash shipping costs

More information: Cheong, J. et al. An inductively powered implantable blood flow sensor microsystem for vascular grafts. IEEE Transactions on Biomedical Engineering 59, 2466–2475 (2012). dx.doi.org/%2010.1109/TBME.2012.2203131

add to favorites email to friend print save as pdf

Related Stories

Sensor in artery measures blood pressure

Jan 05, 2009

(PhysOrg.com) -- High blood pressure can be a trial of patience for doctors and for sufferers, whose blood pressure often has to be monitored over a long time until it can be regulated. This will now be made ...

Pressure sensors in the eye

Sep 03, 2007

Sensors can monitor production processes, unmask tiny cracks in aircraft hulls, and determine the amount of laundry in a washing machine. In future, they will also be used in the human body and raise the alarm ...

Recommended for you

Finnish inventor rethinks design of the axe

4 hours ago

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

User comments : 0

More news stories

TCS, Mitsubishi to create new Japan IT services firm

India's biggest outsourcing firm Tata Consultancy Services (TCS) and Japan's Mitsubishi Corp said Monday they are teaming up to create a Japanese software services provider with annual revenues of $600 million.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...