Microscale medical sensors inserted under skin can be powered wirelessly by external handheld receiver

Mar 27, 2013
Biomedical engineering: No batteries required
A handheld reader (top right) wirelessly powers and interrogates a tiny blood-pressure sensor embedded inside a prosthetic graft, inserted in this case as a conduit for haemodialysis in a patient with kidney failure. Credit: 2013 A*STAR Institute of Microelectronics

Implantable electronic devices potentially offer a rapid and accurate way for doctors to monitor patients with particular medical conditions. Yet powering such devices remains a fundamental challenge: batteries are bulky and eventually need recharging or replacing. Jia Hao Cheong at the A*STAR Institute for Microelectronics, Singapore, and his co-workers are developing an alternative approach that eliminates the need for a battery. Their miniature devices are based on wireless power-transfer technology.

The research team has developed a microscale to monitor blood flow through . Surgeons use these prosthetic grafts to bypass diseased or clogged blood vessels in patients experiencing restricted blood supply, for example. Over time, however, the graft can also become blocked. To avoid complete failure, blood flow through the graft must be monitored regularly, but existing techniques are slow and costly.

These limitations prompted the researchers to develop a bench-top prototype of a device that could be incorporated inside a graft to monitor blood flow. The implant is powered by a handheld external reader, which uses inductive coupling to wirelessly transfer energy, a technology similar to that found in the latest wireless-charging mobile phones. The team developed an application-specific, integrated circuit for the implant designed for low power use (see image).

The incoming energy powers circuits in the device that control sensors based on silicon . This material is piezoresistive: as blood flows over the sensor the associated induce a measurable increase in , proportional to the flow pressure.

Key to the success of the device is its ability to work with a very limited power supply. Most of the incoming energy is absorbed by skin and tissue before it can reach the implant, which may be inserted up to 50 millimeters deep.

"Our flow achieves an ultra-low power consumption of 12.6 microwatts," Cheong says. For example, the sensor transmits its data to the handheld reader passively, by backscattering some of the incoming energy. "We have tested our system with 50-millimeter-thick tissue between the external coil and implantable coil, and it successfully extracted the pressure data from the implantable device," he adds.

Cheong and his co-workers' tests showed that the prototype sensor was also highly pressure sensitive, providing pressure readings with a resolution of 0.17 pounds per square inch (1,172 pascals). "The next step of the project is to integrate the system and embed it inside a graft for [an experimental] animal," Cheong says.

Explore further: Revealing faded frescos

More information: Cheong, J. et al. An inductively powered implantable blood flow sensor microsystem for vascular grafts. IEEE Transactions on Biomedical Engineering 59, 2466–2475 (2012). dx.doi.org/%2010.1109/TBME.2012.2203131

Related Stories

Sensor in artery measures blood pressure

Jan 05, 2009

(PhysOrg.com) -- High blood pressure can be a trial of patience for doctors and for sufferers, whose blood pressure often has to be monitored over a long time until it can be regulated. This will now be made ...

Pressure sensors in the eye

Sep 03, 2007

Sensors can monitor production processes, unmask tiny cracks in aircraft hulls, and determine the amount of laundry in a washing machine. In future, they will also be used in the human body and raise the alarm ...

Recommended for you

Revealing faded frescos

7 hours ago

Many details of the wall and ceiling frescos in the cloister of Brandenburg Cathedral have faded: Plaster on which horses once "galloped" appears more or less bare. A hyperspectral camera sees images that remain hidden to ...

Device could detect driver drowsiness, make roads safer

8 hours ago

Drowsy driving injures and kills thousands of people in the United States each year. A device being developed by Vigo Technologies Inc., in collaboration with Wichita State University professor Jibo He and ...

New capability takes sensor fabrication to a new level

Jun 30, 2015

Operators must continually monitor conditions in power plants to assure they are operating safely and efficiently. Researchers on the Sensors and Controls Team at DOE's National Energy Technology Laboratory ...

Smart phones spot tired drivers

Jun 30, 2015

An electronic accelerometer of the kind found in most smart phones that let the device determine its orientation and respond to movement, could also be used to save lives on our roads, according to research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.