Researchers' new method may sharpen microscopic images

Mar 19, 2013

(Phys.org) —UT Dallas researchers are developing a new low-light imaging method that could improve a number of scientific applications, including the microscopic imaging of single molecules in cancer research.

professor Dr. Raimund Ober and his team recently published their findings in the journal Nature Methods. In the journal, they describe a method which minimizes the of images that can occur with conventional imaging approaches.

"Any image you take of an object is translated by the camera into pixels with added electronic noise," Ober said. "Any distortion of an image makes it harder to obtain accurate estimates of the quantities you're interested in."

This method could greatly enhance the accuracy with which quantities of interest, such as the location, size, and orientation of an object, are extracted from the acquired images.

Ober and his team tackled this problem by using the EMCCD camera (a standard low-light image detector) in a highly unconventional setting. Using this method, scientists can estimate quantities of interest from the image data with substantially higher accuracy than those made with conventional low-light imaging.

"We have figured out through rigorous theoretical developments that when you run an EMCCD camera in such a way that very few photons hit each of its pixels, the resulting image is minimally corrupted by the camera noise," he said. "Our method is about using the EMCCD camera to its fullest potential, beyond what is commonly believed to be possible by the community."

By increasing the of the image to reduce the number of photons detected in each image pixel, they were able to significantly reduce the camera noise and considerably lessen the deteriorative effect of pixilation.

In fact, the team managed to attain particle localization accuracy that was twofold higher than those obtained with conventional EMCCD imaging.

Ober and his team applied UAIM (Ultrahigh Accuracy Imaging Modality) to the live-cell tracking of a standard protein marker for breast cancer. By being able to accurately follow the movement of the marker, valuable insights on the biology of breast cancer could be gained.

"The tracking of individual proteins represents an important way to study cancer and other diseases at the molecular level," Ober said. "The applications of UAIM for diagnostics and research are promising."

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

More information: www.nature.com/nmeth/journal/v… /abs/nmeth.2396.html

Related Stories

Ultrasensitive photon hunter

Nov 07, 2012

When it comes to imaging, every single photon counts if there is barely any available light. This is the point where the latest technologies often reach their limits. Researchers have now developed a diode ...

Laser-based camera can see around corners

Nov 17, 2010

(PhysOrg.com) -- Researchers from MIT have developed a camera that can capture images of a scene that is not in its direct line of sight. The camera is equipped with a femtosecond laser, which fires extremely ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

11 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

11 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

12 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0