Researchers discover mechanism that regulates steroid hormone production in Drosophila

Mar 07, 2013
Bantam mutant animals (right) show reduced body size as a result of abnormally high steroid hormone levels. Credit: © M. Milán lab, IRB Barcelona. Author: Laura Boulan

Looking at the transformation of a fly larva into a pupa may help researchers to understand the molecular mechanisms that trigger puberty. A study conducted on the fruit fly, Drosophila melanogaster, by scientists at the Institute for Research in Biomedicine (IRB Barcelona) led by ICREA research professor Marco Milán, identifies an miRNA as key to the relationship between hormones that control growth and sexual maturity.

According to Milán, "accelerated growth or obesity can provoke premature puberty in humans, harming their development – and this is a growing problem in Western societies. Today, physicians know very little about the molecular mechanisms behind premature puberty, and Drosophila is providing us with our first hints." has published the study today online.

The study, whose first author, Laura Boulan, is a french PhD student within the "la Caixa" International PhD Programme at IRB Barcelona, pulled apart the phases of development in the fly to reveal a delicate dialogue between growth and maturity, and found that it is regulated by the activity of an called bantam. The team discovered that insulin, a hormone involved in metabolism and growth, reduces the levels of bantam present in the cells. Reduced levels of bantam lead to an increase in levels. "This increase in steroid hormones causes growth to stop," says Milán. Though the relationship between metabolism, growth and puberty is already known, this study has identified for the first time the molecular mechanism that determines this relationship and has pinpointed bantam as a key mediator in the dialogue between the hormones involved.

The fly prothoracic gland (in green) produces steroid hormones. Credit: M. Milán lab, IRB Barcelona. Author: Laura Boulan Credit: © M. Milán lab, IRB Barcelona. Author: Laura Boulan

These findings may be relevant to if elements homologous to those found in flies can be identified in people. "Premature slows down growth, preventing adults from developing properly," says Boulan. Despite the differences between the fruit fly and humans, this study represents an important step forward. The high degree of genetic similarity and the conservation of many between the two species allow researchers to model many complex phenomena in flies, or worms, and then look to see if they correspond to what they see in other more complex models, including humans.

"By beginning to identify these elements in Drosophila, researchers will be able to make much faster progress in their efforts to discover new drugs to prevent and treat premature puberty," concludes Milán.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Current Biology (2013). doi: 10.1016/j.cub.2013.01.072

add to favorites email to friend print save as pdf

Related Stories

Control gene for developmental timing discovered

Sep 28, 2011

University of Alberta researchers have identified a key regulator that controls the speed of development in the fruit fly. When the researchers blocked the function of this regulator, animals sped up their rate of development ...

Fruit Flies, Death, and Immunity

Mar 28, 2007

University of Arkansas scientists have found an important mechanism that regulates the destruction of larval fruit fly salivary glands that could point the way to understanding programmed cell death in the human immune system.

A new system for collaboration in cell communication

Jun 26, 2007

Investigators from the Institute of Research in Biomedicine (IRB Barcelona) have identified a new signalling mechanism among cells in the fruit fly, Drosophila melanogaster. The researchers found that two independent groups ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.