Magnetic fingerprints of interface defects in silicon solar cells detected

March 27, 2013
Magnetic fingerprints of interface defects in silicon solar cells detected
Credit: HZB / University Paderborn

Using a highly sensitive method of measurement, HZB physicists have managed to localize defects in amorphous/crystalline silicon heterojunction solar cells. Now, for the first time ever, using computer simulations at Paderborn University, the scientists were able to determine the defects' exact locations and assign them to certain structures within the interface between the amorphous and crystalline phases.

In theory, silicon-based solar cells are capable of converting up to 30 percent of sunlight to electricity - although, in reality, the different kinds of loss mechanisms ensure that even under ideal lab conditions it does not exceed 25 %. Advanced heterojunction cells shall affront this problem: On top of the wafer's surface, at temperatures below 200 °C, a layer of 10 nanometer disordered (amorphous) silicon is deposited. This thin film is managing to saturate to a large extent the interface defects and to conduct out of the cell. Heterojunction solar cells have already high efficiency factors up to 24,7 % – even in industrial scale. However, scientists had until now only a rough understanding of the processes at the remaining interface defects.

Now, physicists at HZB's Institute for Silicon Photovoltaics have figured out a rather clever way for detecting the remaining defects and characterizing their electronic structure. "If electrons get deposited on these defects, we are able to use their spin, that is, their small magnetic moment, as a probe to study them," Dr. Alexander Schnegg explains. With the help of EDMR, electrically detected , an ultrasensitive method of measurement, they were able to determine the local defects' structure by detecting their magnetic fingerprint in the photo current of the solar cell under a magnetic field and .

of Paderborn University could compare these results with quantum chemical , thus obtaining information about the defects' positions within the layers and the processes they are involved to decrease the cells' efficiency. "We basically found two distinct families of defects", says Dr. Uwe Gerstmann from Paderborn University, who collaborates with the HZB Team in a program sponsored by Deutsche Forschungsgemeinschaft (DFG priority program 1601). "Whereas in the first one, the defects are rather weakly localized within the amorphous layer, a second family of defects is found directly at the interface, but in the ."

For the first time ever the scientists have succeeded at directly detecting and characterizing processes with atomic resolution that compromise these solar cells' . The cells were manufactured and measured at the HZB; the numerical methods were developed at Paderborn University. "We can now apply these findings to other types of in order to optimize them further and to decrease production costs", says Schnegg.

Explore further: Sharp Develops Mass-Production Technology for Triple-Junction Thin-Film Solar Cells

More information: This work is published on March 27, 2013, in Phys. Rev. Letters at doi: 10.1103/PhysRevLett.110.136803

Related Stories

Current loss tracked down by magnetic fingerprint

October 26, 2010

Conventional solar cells made from crystalline silicon are difficult and energy-intensive to manufacture. Organic solar cells are cheaper, but have always produced less electricity. Why this is so has never been fully explained. ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.