Research provides key insight into how cells fuse

Mar 07, 2013
When the fusogenic protein Eff-1 was expressed, a few normally nonfusing cells merged (left). But when Eff-1 was expressed with a protein that could organize cytoskeleton remodeling, fusion was rampant, leading to the formation of giant cells with many nuclei (right). Credit: From K. Shilagardi, et al., Science, 7 March 2013 (10.1126/science.1234781).

Researchers at Johns Hopkins have established a high-efficiency cell-cell fusion system, providing a new model to study how fusion works. The scientists showed that fusion between two cells is not equal and mutual as some assumed, but, rather, is initiated and driven by one of the fusion partners. The discovery, they say, could lead to improved treatments for muscular dystrophy, since muscle regeneration relies on cell fusion to make muscle fibers that contain hundreds or even thousands of nuclei.

The study reveals two critical components that have to be present for cell fusion to happen, explains Elizabeth Chen, Ph.D., an associate professor of and genetics in the Johns Hopkins University Institute for Basic Biomedical Sciences. Intriguingly, she says, one of these vital components actually changes the structure of one cell's scaffolding—its —to form that push their way into the other cell to initiate fusion.

Chen's research group had seen this before; using very high-resolution electron microscopy, they showed in 2010 that in developing fly muscles, a muscle cell merges with another muscle cell by extending finger-like protrusions into its fusion partner. But cell fusion is not only behind , but also fertilization (sperm fuses with egg), placenta formation, and . Thus, Chen says, it wasn't clear whether the finger-like protrusions were present for fusion outside of muscles, or if protrusions really drove the fusion process.

To study fusion in a simple system designed to answer those questions, Chen and her group wanted to establish a culture of fusing cells, starting from a cell line made up of nonmuscle fly cells. These weren't of a type that normally fuses, so the group tried modifying them with proteins that were thought to be important for muscle cell fusion in fruit flies. Alone and in combination, however, those proteins failed to entice the cells to fuse. The researchers were stuck, Chen said.

Then they learned about another group's finding in a tiny worm called C. elegans: a protein called Eff-1 that localized on the cell's outer skin, or membrane, and could induce cell-cell fusion not only in the worm, but also in cultured moth cells. When Chen's group introduced Eff-1 into their fly cells, only about 10 percent of the cells fused. But when they introduced both Eff-1 and a fly protein that could organize cytoskeleton remodeling, "almost 90 percent of the cells started to fuse," Chen said. "We had our system."

"Reconstructing high-efficiency cell fusion outside of a living organism allows us to observe the process in unprecedented detail and deduce general principles underlying cell-cell fusion," Chen notes. One of her group's first discoveries with the new system was that Eff-1 clusters along the finger-like protrusions, where the two fusion partners are in close contact. "This suggests to us that one of the purposes of the invasive fingers is to engage fusogenic proteins in both cells," Chen explains. "We are excited about this finding since it reveals, for the first time, an intimate coordination between the actin cytoskeleton-propelled membrane protrusions and fusogenic proteins, a principle that will likely apply to other types of cell fusion events as well."

The insights from this study raise many new questions, and Chen says the cell culture system will be a major help in her and other scientists' continued study of . With enough knowledge of the process, researchers may be able to optimize cell-based treatments for muscular dystrophy, in which normal muscle cells are transplanted into a patient and then fuse to repair damaged .

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Related Stories

Macho muscle cells force their way to fusion

Feb 16, 2011

In fact, according to new research from Johns Hopkins, the fusion of muscle cells is a power struggle that involves a smaller mobile antagonist that points at, pokes and finally pushes into its larger, stationary partner ...

Muscle cells point the finger at each other

Nov 22, 2010

A new study reveals that muscle cells fuse together during development by poking "fingers" into each other to help break down the membranes separating them. The study appears online on November 22, 2010 in the Journal of ...

How muscle develops: A dance of cellular skeletons

Jun 04, 2011

Revealing another part of the story of muscle development, Johns Hopkins researchers have shown how the cytoskeleton from one muscle cell builds finger-like projections that invade into another muscle cell's territory, eventually ...

Researchers Find 'Fusion' Protein

Apr 11, 2007

Working with fruit flies, scientists at Johns Hopkins have discovered a protein required for two neighboring cells to fuse and become one "super cell."

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.