Modeling Jupiter and Saturn's possible origins

Mar 05, 2013
Modeling Jupiter and Saturn's possible origins

New theoretical modeling by Carnegie's Alan Boss provides clues to how the gas giant planets in our solar system—Jupiter and Saturn—might have formed and evolved. His work was published recently by the Astrophysical Journal.

New stars are surrounded by rotating gas disks during the early stages of their lives. Gas giant planets are thought to form in the presence of these disks.

Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic outbursts, lasting about 100 years, which transfer mass from the disk onto the young star, increasing its luminosity. It is thought that these short bursts of mass accretion are driven by marginal gravitational instability in the gas disk.

There are competing theories for how gas giant planets form around proto-suns. One proposes that the planets formed from slowly growing ice and rock cores, followed by rapid accretion of gas from the surrounding disk. The other theory proposes that clumps of form in , increasing in mass and density, forming a in a single step.

Boss developed highly detailed, three dimensional models demonstrating that regardless of how gas giant planets form, they should have been able to survive periodic outbursts of mass transfer from the gas disk onto the young star. One model similar to our own Solar System was stable for more than 1,000 years, while another model containing planets similar to our Jupiter and Saturn was stable for more than 3,800 years. The models showed that these planets were able to avoid being forced to migrate inward to be swallowed by the growing proto-sun, or being tossed completely out of the by close encounters with each other.

"Gas giant planets, once formed, can be hard to destroy," said Boss, "even during the energetic outbursts that experience."

Given that searches for extrasolar gas giant planets have found them to be present around about 20% of sun-like stars, this is a reassuring outcome. It suggests that our improved theoretical understanding of the formation and orbital evolution of gas giants is on the right track.

Explore further: Astronomers see pebbles poised to make planets

Related Stories

Making Jupiters

Aug 21, 2009

IC348 is a glowing nebula of young stars, hot gas, and cold dust seen in the direction of the constellation of Perseus. It is the nearest rich cluster of young stars to earth, being only about one thousand ...

Baby Jupiters must gain weight fast

Jan 05, 2009

The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation ...

Rocky planets could have been born as gas giants

Sep 16, 2011

When NASA announced the discovery of over 1,200 new potential planets spotted by the Kepler Space Telescope, almost a quarter of them were thought to be Super-Earths. Now, new research suggests that these ...

Recommended for you

Astronomers see pebbles poised to make planets

20 hours ago

A team of astronomers led from St Andrews and Manchester universities today (6 July) announced the discovery of a ring of rocks circling a very young star. This is the first time these 'pebbles', thought ...

Small cosmic 'fish' points to big haul for SKA Pathfinder

21 hours ago

A wisp of cosmic radio waves, emitted before our solar system was born, shows that a new radio telescope will be able to detect galaxies other telescopes can't. The work, led by Dr James Allison of the Commonwealth ...

Gaia produces stellar density map of the Milky Way

21 hours ago

This image, based on housekeeping data from ESA's Gaia satellite, is no ordinary depiction of the heavens. While the image portrays the outline of our Galaxy, the Milky Way, and of its neighbouring Magellanic ...

Hubble view: Wolf-Rayet stars, intense and short-lived

Jul 03, 2015

This NASA/European Space Agency (ESA) Hubble Space Telescope picture shows a galaxy named SBS 1415+437 (also called SDSS CGB 12067.1), located about 45 million light-years from Earth. SBS 1415+437 is a Wolf-Rayet ...

NASA image: Stellar sparklers that last

Jul 03, 2015

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.