New insights into boron's chemistry at room temperature

March 29, 2013 by Anne M Stark
A ball-and-stick structural model of rhombohedral boron is shown in the foreground and a picture of Badwater Basin in California is shown in the background. The Badwater Basin salt flats contain high concentrations of evaporative minerals such as borax, an important boron-containing compound. Credit: Tadashi Ogitsu; Liam Krauss/Livermore Computing.

( —Livermore researchers have described in detail the properties of the room temperature form of the element boron.

In the periodic table, boron occupies a peculiar, transitional position. It sits on the first row, and has to its left, and non-metals to its right. Furthermore, it is the only non-metal in the third column of the .

It is not surprising that the crystallographic structure and topology of boron's stable form at (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β-boron, characterized by interconnecting icosahedra (a regular polyhedron with 20 identical equilateral triangular faces) partially occupied sites, and an unusually large number of atoms per unit cell (more than 300), has been known for more than 40 years.

Boron chemistry reported in Chemical Reviews
The bonding orbitals (red and blue surfaces) in B-boron demonstrate how vacancies and self-interstitials can stabilize the structure. Left: Part of the stable form of boron called the B28 unit (gold ball-and-stick) has a local instability that leads to the introduction of B13 vacancies with unoccupied orbitals (red surfaces). Right: The system is stabilized as two interstitials boronatoms (B17 and B18) are introduced as a pair, which transforms the unoccupied orbitals (red surfaces on the left) to nearly complete chemical bonds (blue surfaces on the right nearby the B17 and B18 interstitials).

Boron remains the only element purified in macroscopic quantities for which the ground state geometry has not been completely determined by experiments. Theoretical progress over the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at , as well as of its electronic and .

In the March 8 online edition of Chemical Reviews, LLNL researchers Tadashi Ogitsu and Eric Schwegler along with Giulia Galli of University of California, Davis, discuss in detail starting from the history of boron research, and the properties of β-boron, as inferred from experiments and the ab-initio theories developed over the last decade.

Explore further: Discovery of ionic elemental crystal against chemical intuition

More information: To read the full research article, go tohere.

Related Stories

Recommended for you

Scientists create revolutionary material to clean oil spills

November 30, 2015

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.