IBM researchers find new molecular technique to charge memory chips

Mar 21, 2013
A high–resolution cross-section transmission electron microscopy image of a 2.7 nm thick VO2 film deposited on TiO2(001). Credit: Science, DOI: 10.1126/science.1230512

IBM today announced a materials science breakthrough at the molecular level that could pave the way for a new class of non-volatile memory and logic chips that would use less power than today's silicon devices like cell phones. Rather than using conventional electrical means to charge today's semiconductors, IBM's scientists discovered a new way to power chips using tiny ionic currents, which are streams of charged molecules that can mimic the event-driven way in which the human brain operates. The research is published today in the journal Science.

Today's computers typically use semiconductors made with CMOS process technology and it was long thought that these chips would double in performance and decrease in size and cost every two years. But the materials and techniques to develop and build CMOS chips are rapidly approaching physical and performance limitations and new solutions may soon be needed to develop high performance and low-power devices.

The IBM research scientists were the first to convert from an insulated to conductive state using the insertion and removal of during the material characterization process. Once the material becomes a conductor, the IBM experiment showed the chip would maintain a stable even if the power to a device is turned off. This non-volatile characteristic means the chip could be used to store and transport data in a more efficient, event-driven manner instead of requiring the silicon to be constantly charged on and off by an electrical current.

"Our unique ability to understand and control matter at molecular dimensions enables us to come up with new materials that could one day stand in for silicon based technologies," said Dr. Stuart Parkin, an IBM Fellow at IBM Research. "We're writing a new chapter in the future of computing with innovations – including looking beyond traditional electrically charge-based devices - to prevent the industry from hitting a technology brick wall."

To achieve this breakthrough, IBM researchers applied a positively charged ionic liquid electrolyte to an insulated oxide material and successfully converted the material to a conducting metal. The material held its metallic state until a negatively charged ionic liquid electrolyte was applied, to convert it back to its original, insulating state.

Metal to insulator transition materials have existed and been researched for years, however, contrary to earlier conclusions, IBM discovered it was the removal and injection of oxygen molecules into the metal oxides that was responsible for the state changes in the material. The transition from a conducting state to an insulating state was previously achieved by changing the temperature or applying an external stress, both of which do not lend themselves easily to making chips.

Explore further: Quick-change materials break the silicon speed limit for computers

More information: Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation, Science 22 March 2013: Vol. 339 no. 6126 pp. 1402-1405 DOI: 10.1126/science.1230512

ABSTRACT
Electrolyte gating with ionic liquids is a powerful tool for inducing novel conducting phases in correlated insulators. An archetypal correlated material is vanadium dioxide (VO2), which is insulating only at temperatures below a characteristic phase transition temperature. We show that electrolyte gating of epitaxial thin films of VO2 suppresses the metal-to-insulator transition and stabilizes the metallic phase to temperatures below 5 kelvin, even after the ionic liquid is completely removed. We found that electrolyte gating of VO2 leads not to electrostatically induced carriers but instead to the electric field–induced creation of oxygen vacancies, with consequent migration of oxygen from the oxide film into the ionic liquid. This mechanism should be taken into account in the interpretation of ionic liquid gating experiments.

Related Stories

Recommended for you

Oculus unveils new prototype VR headset

16 hours ago

Oculus has unveiled a new prototype of its virtual reality headset. However, the VR company still isn't ready to release a consumer edition.

Wireless sensor transmits tumor pressure

23 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Tim Cook puts personal touch on iPhone 6 launch

Sep 20, 2014

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

Sep 19, 2014

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Mar 22, 2013
This works below 5 Kelvin? Bye-bye practical memories.