Graphene researchers create 'superheated' water that can corrode diamonds

Mar 11, 2013

A team of researchers from the National University of Singapore (NUS) led by Professor Loh Kian Ping, Head of the Department of Chemistry at the NUS Faculty of Science, has successfully altered the properties of water, making it corrosive enough to etch diamonds. This was achieved by attaching a layer of graphene on diamond and heated to high temperatures. Water molecules trapped between them become highly corrosive, as opposed to normal water.

This novel discovery, reported for the first time, has wide-ranging , from environmentally-friendly degradation of organic wastes to laser-assisted etching of semiconductor or dielectric films.

The findings were published online in Nature Communications on 5 March 2013 with Ms Candy Lim Yi Xuan, a Ph.D. candidate at the NUS Graduate School for Integrative Sciences and Engineering as the first author.

When diamond meets graphene

While diamond is known to be a material with superlative physical qualities, little is known about how it interfaces with , a one-atom thick substance composed of pure carbon.

A team of scientists from NUS, Bruker Singapore and Hasselt University Wetenschapspark in Belgium, sought to explore what happens when a layer of graphene, behaving like a soft membrane, is attached on diamond, which is also composed of carbon. To encourage bonding between the two rather dissimilar carbon forms, the researchers heated them to .

At elevated temperatures, the team noted a restructuring of the interface and between graphene and diamond. As graphene is an impermeable material, water trapped between the diamond and graphene cannot escape. At a temperature that is above 400 degree Celsius, the trapped water transforms into a distinct supercritical phase, with different behaviours compared to normal water.

Said Professor Loh, who is also a Principal Investigator with the Graphene Research Centre at NUS, "We show for the first time that graphene can trap water on diamond, and the system behaves like a 'pressure cooker' when heated. Even more surprising, we found that such superheated water can corrode diamond. This has never been reported."

Industrial applications and new insights

Due to its transparent nature, the graphene bubble-on-diamond platform provides a novel way of studying the behaviours of liquids at high pressures and high temperature conditions, which is traditionally difficult.

"The applications from our experiment are immense. In the industry, supercritical can be used for the degradation of organic waste in an environmentally friendly manner. Our work can is also applicable to the laser-assisted etching of semiconductor or dielectric films, where the graphene membrane can be used to trap liquids," Prof Loh elaborated.

To further their research, Prof Loh and his team will study the supercritical behaviours of other fluids at high temperatures, and strive to derive a wider range of industrial applications.

Explore further: Thin diamond films provide new material for micro-machines

Related Stories

IBM introduces new graphene transistor

Apr 11, 2011

(PhysOrg.com) -- In a report published in Nature, Yu-ming Lin and Phaedon Avoris, IBM researchers, have announced the development of a new graphene transistor which is smaller and faster than the one they i ...

Writing graphene circuitry with ion 'pens'

Mar 27, 2012

The unique electrical properties of graphene have enticed researchers to envision a future of fast integrated circuits made with the one-carbon-atom-thick sheets, but many challenges remain on the path to commercialization. ...

Graphene offers protection from intense laser pulses

Dec 30, 2011

Researchers from Singapore and the UK have jointly announced a new benchmark in broadband, non-linear optical-limiting behavior using single-sheet graphene dispersions in a variety of heavy-atom solvents and ...

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

Recommended for you

Light pulses control graphene's electrical behavior

16 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

FastEddy
1 / 5 (3) Mar 12, 2013
"... wide-ranging industrial applications ..." says it all. 400 degrees C. is a lot cooler than laser or electric arc machining = better, easier, cheaper (maybe).
Husky
not rated yet Mar 13, 2013
agreed, challenge will be to stuff my full garbage bag under that thin film, but i am confident something good will come out of this.