Genetic analysis saves major apple-producing region of Washington state

Mar 22, 2013 by Kirk Reinbold
Rhagoletis indifferens.

(Phys.org) —In August 2011, researchers from the U.S. Department of Agriculture were presented with a serious, and potentially very costly, puzzle in Kennewick, Wash. Since Kennewick lies within a region near the heart of Washington state's $1.5 billion apple-growing region, an annual survey of fruit trees is performed by the Washington State Department of Agriculture (WSDA) to look for any invading insects. This time the surveyors discovered a crabapple tree that had been infested by a fruit fly that they couldn't identify.

It was possible that the fly's larvae, eating away inside the crabapples as they grew toward adulthood, belonged to a relatively harmless species that had simply expanded its traditional diet. In that case, they posed little threat to the surrounding in central Washington.

But the real fear was that they represented an expansion in the range of the invasive apple maggot fly, known to biologists as Rhagoletis pomonella. If so, then this would trigger a costly quarantine process affecting three counties in the state.

"In one of the world's leading apple-growing regions, a great deal of produce and economic livelihood rested on quickly and accurately figuring out which one of the flies was in that tree," says Jeffrey Feder, professor of biological sciences and a member of the Advanced Diagnostics & Therapeutics initiative (AD&T) at the University of Notre Dame. "And for these flies, it can sometime turn out to be a difficult thing to do."

As Feder and his team, including graduate student Gilbert St. Jean and AD&T research assistant professor Scott Egan, discuss in a new study in the Journal of Economic Entomology, the WSDA sent larvae samples to Wee Yee, research entomologist at the USDA's Yakima Agricultural Research Laboratory in Wapato, Wash. One larva was sent to Notre Dame for . The study sought to compare Notre Dame's genetic analysis to Yee's visual identification after the larvae had developed into adults. Fortunately, the fly identified, Rhagoletis indifferens, is not known to infest apples. The Notre Dame group further demonstrated that it is possible to genetically identify the correct fly species within two days, compared to the four months required to raise and visually identify the fly.

A separate study led by the Feder lab details how the apple maggot fly was recently introduced into the Pacific Northwest region of the U.S., likely via larval-infested apples from the East. The flies have subsequently reached as far north as British Columbia, Canada, and as far south as northern California. So far, though, the apple maggot has not been reported infesting any commercial apple orchards in central Washington.

"The correct identification of the infesting crabapple trees saved the local, state and federal agencies thousands of dollars in monitoring, inspection and control costs," Yee said. "The cost to growers if the apple maggot had been found to be established in the region would have been very substantial (easily over half a million dollars), but the rapid diagnostic test developed at Notre Dame suspended the need to proceed with the rulemaking process, saving staff and administrative costs."

The Feder team is continuing to refine the genetic assays to develop a portable test that would be valuable in apple-growing regions, as well as ports of entry where fruit infested by nonlocal insect species can be rapidly detected, to prevent the spread of the insect.

Explore further: Call for alternative identification methods for endangered species

Related Stories

Researchers observe evolution chain reaction

Feb 05, 2009

(PhysOrg.com) -- A team of researchers are reporting the ongoing emergence of a new species of fruit fly--and the sequential development of a new species of wasp--in the February 6 issue of the journal Science.

Recommended for you

Plants with dormant seeds give rise to more species

5 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

15 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...