First-ever determination of protein structure with X-ray laser

Mar 14, 2013 by Anne M Stark
The atomic-scale structure of the enzyme tied to the single-celled parasite responsible for African sleeping sickness.

(Phys.org) —An international team of researchers, including LLNL physicist Matthias Frank and postdoc Mark Hunter, have for the first time used an ultra-intense X-ray laser to determine the previously unknown atomic-scale structure of a protein.

The work was reported in the online edition of Science, which also featured the story as a News Flash. The team determined the structure of an enzyme key to the survival of the single-celled parasite Trypanosoma brucei, responsible for , a disease that kills 30,000 people each year.

This new structural information should help guide the search for drugs that act like the propeptide, tying up the enzyme and killing the parasite. To determine the structure of the precursor form of the protein—which does not form crystals large enough for traditional X-ray diffraction—submicron nanocrystals produced by the parasite were analyzed by the "diffraction before destruction" technique, in which individual nanocrystals are passed, one by one, through the X-ray beam at the , followed by "stacking"of the resultant —in this case, from 178,875 individual nanocrystals.

The achievement also demonstrates that the approach can provide otherwise unobtainable biomolecular information, potentially ushering in a new era of .

The research also was recognized as one of the "Top 10 2012 Science Breakthroughs of the Year" in Science Magazine. See the story.

Explore further: At the origin of cell division: The features of living matter emerge from inanimate matter

add to favorites email to friend print save as pdf

Related Stories

X-ray laser research ranks in Science magazine's top 10

Dec 24, 2012

(Phys.org)—Research at SLAC's powerful X-ray laser that could lead to the development of specialized drugs to better combat African sleeping sickness has been recognized by Science magazine as one of the ...

Fastest X-ray images of tiny biological crystals

Jan 05, 2012

(PhysOrg.com) -- An international research team headed by DESY scientists from the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany, has recorded the shortest X-ray exposure of a protein crystal ...

Recommended for you

How to test the twin paradox without using a spaceship

13 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.