Doubling estimates of light elements in the Earth's core

Mar 05, 2013 by Karen Fox
Doubling estimates of light elements in the Earth's core
Velocity-density plots of the samples at high pressures and temperatures. The top panel shows the velocity-density plot for hcp-Fe at both 300 K and 700 K. The dashed lines shows the linear fit, while the solid line shows the power law fit, which matches the data more closely. The bottom panel shows the velocity-density relation of both hcp-Fe and the iron-silicon alloy at 300 K.

The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area of the planet that experiences both extremely high pressure ranging from 3,300,000 to 3,600,000 times atmospheric pressure, and extremely high temperatures somewhere from 5000 to 6000 K. One way to study this area is by recording how sound waves travel across the interior, matching these profiles to known information about how sound waves travel through candidate iron alloys, and attempting to discern which materials must be present. This method requires an understanding of how sound waves travel through the potential materials present in the core.

A team of researchers utilized APS X-rays to develop a new model of how sound waves travel through iron and iron-silicon alloys, showing for the first time that increased temperatures will affect the sound wave profile, and that sound velocity and density correlate in a non-linear way. Their results suggest that the amount of in the inner core could be two times more than estimated in previous studies without considering these effects.

The researchers from the University of Texas at Austin, Argonne National Laboratory, and the Carnegie Institute of Washington studied samples of what is known as hexagonal closest-packed iron (hcp Fe), which is believed to be the high-pressure phase of iron present in the Earth's core, as well as a hcp iron-silicon alloy because silicon is one of the most likely candidate light elements in the core.

The researchers measured the compressional wave velocity (in which the wave has the same direction of vibration as its direction of travel) of the samples using high-energy inelastic x-ray scattering (HERIX) and (XRD) in a resistively-heated at XSD beamline 3-ID of the APS. They made their measurements under simultaneous high-pressure and high-temperature conditions to better simulate conditions in the Earth's core.

Previous studies had suggested that the compressional sound velocity of hcp Fe was generally linear with increased density. In contrast, by subjecting their samples to unprecedented extreme conditions, the team found that the effect of high temperature at a given density on the sound velocity of iron cannot be ignored. As the temperature increased for a given density at high pressures, the slowed down. In addition, the relationship between the sound wave velocity and increased density was not linear, but instead could be better described by an empirical power-law function with concave behavior at higher densities.

The researchers incorporated this new information into models of the Earth's core to provide new estimates of the chemical composition there. The sound wave velocities that have been observed in the core correlate to a profile of hcp-Fe with approximately 8% of silicon by weight at temperatures of 6000 K. This number represents nearly twice the amount estimated in previous studies.

The team hopes to explore additional alloys to further round out estimates of the core's composition and to explain a number of enigmatic behaviors of seismic waves in this most extreme region of the planet. Also, since this study observed temperatures and pressures that are still much lower than those of the inner core, these scientists hope future studies will push the experimental conditions even further. With direct measurements of compressional wave velocities at relevant pressure and temperature conditions on the horizon, such studies may eventually answer the long-standing question of the composition of the Earth's core.

Explore further: Huge waves measured for first time in Arctic Ocean

More information: Mao, Z. et al. Sound velocities of Fe and Fe-Si alloy in the Earth's core, Proc. Natl. Acad. Sci. 109(26), 10239 (June 26, 2012). DOI:10.1073/pnas.1207086109

add to favorites email to friend print save as pdf

Related Stories

Earth's outer core deprived of oxygen: study

Nov 23, 2011

The composition of the Earth's core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen ...

Ironing out the details of the Earth's core

Dec 20, 2011

(PhysOrg.com) -- Identifying the composition of the earth's core is key to understanding how our planet formed and the current behavior of its interior. While it has been known for many years that iron is ...

New scenery at Earth's core-mantle boundary found

Sep 02, 2010

(PhysOrg.com) -- Using a diamond-anvil cell to recreate the high pressures deep within the earth, researchers at the California Institute of Technology (Caltech) have found unusual properties in an iron-rich magnesium- and ...

Scientists probe Earth's core

Apr 28, 2010

We know more about distant galaxies than we do about the interior of our own planet. However, by observing distant earthquakes, researchers at the University of Calgary have revealed new clues about the top ...

Recommended for you

Huge waves measured for first time in Arctic Ocean

5 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

New research reveals Pele is powerful, even in the sky

11 hours ago

One might assume that a tropical storm moving through volcanic smog (vog) would sweep up the tainted air and march on, unchanged. However, a recent study from atmospheric scientists at the University of Hawai'i ...

Image: Wildfires continue near Yellowknife, Canada

11 hours ago

The wildfires that have been plaguing the Northern Territories in Canada and have sent smoke drifting down to the Great Lakes in the U.S. continue on. NASA's Aqua satellite collected this natural-color image ...

Excavated ship traced to Colonial-era Philadelphia

13 hours ago

Four years ago this month, archeologists monitoring the excavation of the former World Trade Center site uncovered a ghostly surprise: the bones of an ancient sailing ship. Tree-ring scientists at Columbia ...

User comments : 0