Effect of image-charges on electron transport better understood

Mar 25, 2013
Effect of image-charges on electron transport better understood
Diagram (top) of a molecule that has been attached to two gold electrodes (yellow in the figure). Electron microscopy image (below) of a break junction. The golden metal strip is broken in the middle; in the opening created a molecule is placed on which measurements can be performed.

Electron transport through a single molecule offers a highly promising new technology for the production of electronic chips. However it is difficult to make a good conducting connection between the molecule and the metal contacts. Researchers from the FOM Foundation, Delft University of Technology and Leiden University have discovered an effect that plays a major role in this: the so-called 'image-charges' in the metal contacts strongly influence the electron transport through the molecule. The molecular conduction can differ by several orders of magnitude as a result of this.

FOM workgroup leaders professor Herre van der Zant and professor Jan van Ruitenbeek published these results with their team online on 17 March in the renowned journal Nature Nanotechnology.

Molecular electronics

Molecules are very small and typically just several nanometres in size. A single molecule between two electrodes could be used as a highly sensitive sensor or extremely small transistor. However the problem in developing these '' is that it is difficult to make with a single molecule. This research has resulted in a better understanding of the fundamental physical behaviour of single molecules. This has led to ideas for using image-charges to realise electronic .

Alignment of energy levels

Image-charges occur in a metal due to the proximity of charge, such as that on the single molecule. The image-charges in the metal in turn influence the energy levels of the molecule. It was already know that this is how image-charges play an important role in through molecules. The image-charges can strongly shift the alignment of the molecular energy levels compared to the energy levels in the metal. That is how they cause an enhanced or diminished conduction. Now for the first time the researchers have systematically described this effect for a single molecule.

Combination of expertise makes measurement possible

By combining their unique areas of expertise, researchers from Delft and Leiden jointly developed a new technique to measure the molecular conduction. The method is based on the 'mechanically guided break junction' technique, invented by Van Ruitenbeek. In Delft, the technique has been expanded by incorporating it into a transistor. This technique makes it possible to vary the distance between the electrodes and therefore the proximity of the molecule, so that the image-charge can be influenced. As a result of this the researchers acquired a unique mechanical and electrical control over the energy levels of the molecule. That allowed them to experimentally determine and quantify the role of the image-charges.

Explore further: For electronics beyond silicon, a new contender emerges

More information: Perrin, M. et al. Large tunable image-charge effects in single-molecule junctions, Nature Nanotechnology (2013). www.nature.com/nnano/journal/v… l/nnano.2013.26.html

add to favorites email to friend print save as pdf

Related Stories

Taking a closer look at molecular electronics

Mar 09, 2012

Molecules and polymers have unique electronic and optical properties suitable for use in electronic devices. These properties, however, are complex and not well understood. Charge transport, for example, is ...

Single molecule electronics and 'chemical soldering'

May 13, 2011

(PhysOrg.com) -- Single molecule electronics is a division of nanotechnology utilizing single molecules as electronic components and its study has the ultimate goal of reducing the size of common electrical ...

S-t-r-e-t-c-h-i-n-g electrical conductance to the limit

Dec 05, 2011

Individual molecules have been used to create electrical components like resistors, transistors and diodes, that mimic the properties of familiar semiconductors. But according to Nongjian (NJ) Tao, a researcher ...

Scientists create world's first molecular transistor

Dec 23, 2009

A group of scientists has succeeded in creating the first transistor made from a single molecule. The team, which includes researchers from Yale University and the Gwangju Institute of Science and Technology ...

'Reversing the problem' clarifies molecular structure

Dec 23, 2011

Optical techniques enable us to examine single molecules, but do we really understand what we are seeing? After all, the fuzziness caused by effects such as light interference makes these images very difficult to interpret. ...

Recommended for you

For electronics beyond silicon, a new contender emerges

8 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

10 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

10 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0