DNA: How to unravel the tangle

Mar 29, 2013
This image shows a chromosome. Credit: SISSA

A research coordinated by the scientists at SISSA of Trieste has now developed and studied a numeric model of the chromosome that supports the experimental data and provides a hypothesis on the bundle's function.

A chromosome spends most of its life "diluted" in the nuclear . To the untrained eye it may look like a randomly entangled thread, yet claim the opposite: although a chaotic component does exist in the bundle, experimental measurements have identified regions that tend to contain specific genes. Thanks to such measurements, researchers have obtained maps of the chromosome in its diluted form, the one in which the DNA transcription processes occur.

Cristian Micheletti, a physicist of SISSA, the International School for Advanced Studies of Trieste, has coordinated an international research team - in which Marco Di Stefano and Angelo Rosa stand out - that has devised an ingenious method which, on one hand, has allowed to verify the already known experimental measures and, on the other, to find data in support of a theory which explains why the DNA bundle is arranged in regions. "Employing the vast amount of publicly available data on , we have identified families of genes co-regulated within a chromosome" explains Micheletti. The co-regulated genes codify "in accord", but how such synchronization occurs is a mystery, since often the genes are located very far from one another on the DNA . "Two main may be considered: either 'messengers' exist that travel back and forth from one gene to the other and coordinate the activity, or the DNA filament folding up inside the tangle brings the genes belonging to the same family physically close."

On the basis of the second assumption Micheletti and his colleagues have used the computer to induce the DNA numeric model to bring the co-regulated genes closer. "The outcome of the simulation has provided a map of chromosome arrangement that is very close to the one obtained through experimentation," explains Micheletti. "Besides, the model has successfully brought closer the belonging to the same family, as we had asked for, in 80% of cases, that is without too much effort, which corroborates the validity of the hypothesis and the effectiveness of the simulation."

The article was chosen by PLOS Computational Biology journal as the cover story for the March issue.

Explore further: Team develops 'cool' new method for probing how molecules fold

More information: www.ploscompbiol.org/article/i… journal.pcbi.1003019

add to favorites email to friend print save as pdf

Related Stories

The movement of proteins

Mar 05, 2013

Cristian Micheletti, a scientist of the International School for Advanced Studies of Trieste (SISSA), has published in Physics of Life Reviews a review on an innovative instrument for protein analysis, a method for which ...

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

How proteins find their way on chromosomes

Jun 25, 2012

A research team at Uppsala University has managed to clarify how proteins that regulate the activity of genes quickly find their way on chromosomes among millions of possible binding sites. The study also confirms a more ...

Recommended for you

'Hairclip' protein mechanism explained

5 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

7 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

7 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
not rated yet Mar 29, 2013
Synchronization through proximity. Avoids the messengers mess.
Where are all these messengers? Great work.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.