DNA: How to unravel the tangle

Mar 29, 2013
This image shows a chromosome. Credit: SISSA

A research coordinated by the scientists at SISSA of Trieste has now developed and studied a numeric model of the chromosome that supports the experimental data and provides a hypothesis on the bundle's function.

A chromosome spends most of its life "diluted" in the nuclear . To the untrained eye it may look like a randomly entangled thread, yet claim the opposite: although a chaotic component does exist in the bundle, experimental measurements have identified regions that tend to contain specific genes. Thanks to such measurements, researchers have obtained maps of the chromosome in its diluted form, the one in which the DNA transcription processes occur.

Cristian Micheletti, a physicist of SISSA, the International School for Advanced Studies of Trieste, has coordinated an international research team - in which Marco Di Stefano and Angelo Rosa stand out - that has devised an ingenious method which, on one hand, has allowed to verify the already known experimental measures and, on the other, to find data in support of a theory which explains why the DNA bundle is arranged in regions. "Employing the vast amount of publicly available data on , we have identified families of genes co-regulated within a chromosome" explains Micheletti. The co-regulated genes codify "in accord", but how such synchronization occurs is a mystery, since often the genes are located very far from one another on the DNA . "Two main may be considered: either 'messengers' exist that travel back and forth from one gene to the other and coordinate the activity, or the DNA filament folding up inside the tangle brings the genes belonging to the same family physically close."

On the basis of the second assumption Micheletti and his colleagues have used the computer to induce the DNA numeric model to bring the co-regulated genes closer. "The outcome of the simulation has provided a map of chromosome arrangement that is very close to the one obtained through experimentation," explains Micheletti. "Besides, the model has successfully brought closer the belonging to the same family, as we had asked for, in 80% of cases, that is without too much effort, which corroborates the validity of the hypothesis and the effectiveness of the simulation."

The article was chosen by PLOS Computational Biology journal as the cover story for the March issue.

Explore further: Researchers capture picture of microRNA in action

More information: www.ploscompbiol.org/article/i… journal.pcbi.1003019

add to favorites email to friend print save as pdf

Related Stories

The movement of proteins

Mar 05, 2013

Cristian Micheletti, a scientist of the International School for Advanced Studies of Trieste (SISSA), has published in Physics of Life Reviews a review on an innovative instrument for protein analysis, a method for which ...

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

How proteins find their way on chromosomes

Jun 25, 2012

A research team at Uppsala University has managed to clarify how proteins that regulate the activity of genes quickly find their way on chromosomes among millions of possible binding sites. The study also confirms a more ...

Recommended for you

Researchers capture picture of microRNA in action

13 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

15 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

17 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

18 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
not rated yet Mar 29, 2013
Synchronization through proximity. Avoids the messengers mess.
Where are all these messengers? Great work.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.