'Dirty blizzard' in gulf may account for missing Deepwater Horizon oil

Mar 15, 2013 by Jill Elish

Oil from the 2010 Deepwater Horizon spill acted as a catalyst for plankton and other surface materials to clump together and fall to the sea floor in a massive sedimentation event that researchers are calling a "dirty blizzard."

Jeff Chanton, the John Widmer Winchester Professor of Oceanography in the Department of Earth, Ocean and at Florida State University, is one of the members of the Deep-C Consortium who presented the dirty blizzard hypothesis at a recent conference in New Orleans that focused on the effects of the oil spill on the Gulf of Mexico ecosystem.

The consortium, which includes researchers from FSU, Eckerd College, the University of South Florida and Georgia Institute of Technology, confirmed the never before observed dirty blizzard hypothesis by using thorium, lead and radiocarbon isotopes in addition to of sediments.

The dirty blizzard phenomenon may explain what happened to some portion of the more than 200 million gallons of spilled oil. Microbes likely processed most of the oil within months of the spill, but government assessments have not accounted for all of the spilled oil.

"Some of the missing oil may have mixed with deep , creating a dirty bathtub effect," Chanton said. "The sediments then fell to the ocean floor at a rate 10 times the normal deposition rates. It was, in essence, an underwater blizzard."

The oily sediments deposited on the could cause significant damage to ecosystems and may affect in the future, he said.

The dirty blizzard hypothesis explains why layers of water that would normally be cloudy with suspended plankton instead appeared transparent during the spill, except for strings of particles falling to the bottom.

"The oil just sucked everything out of the surface," Chanton said.

Chanton and his Deep-C colleagues are continuing their research to determine exactly how much of the oil ended up on the sea floor.

Explore further: Five anthropogenic factors that will radically alter northern forests in 50 years

add to favorites email to friend print save as pdf

Related Stories

Source of persistent Gulf sheen remains a mystery

Dec 18, 2012

Officials say underwater inspections at the site of BP's Deepwater Horizon rig disaster have failed to identify the source of a persistent sheen on the surface of the Gulf of Mexico.

Researchers call for a new direction in oil spill research

Apr 12, 2012

Inadequate knowledge about the effects of deepwater oil well blowouts such as the Deepwater Horizon event of 2010 threatens scientists' ability to help manage and assess comparable events in future, according to an article ...

Recommended for you

New research on Earth's carbon budget

3 hours ago

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

More, bigger wildfires burning western US, study shows

21 hours ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 0

More news stories

New research on Earth's carbon budget

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...