Computer models show how deep carbon could return to Earth's surface

Mar 18, 2013
New computer modeling of water under extreme pressure shows that carbonate could dissolve in water deep in the Earth and so return to the surface. This rendering shows water molecules (white/pink) surrounding a carbonate ion (red/grey) with a section of the Earth in the background. Credit: Ding Pan and Yubo Zhang, UC Davis

Computer simulations of water under extreme pressure are helping geochemists understand how carbon might be recycled from hundreds of miles below the Earth's surface. The work, by researchers at the University of California, Davis, and Johns Hopkins University, is published March 18 in the journal Proceedings of the National Academy of Sciences.

are the basis of life, provide most of our fuels and contribute to . The cycling of carbon through the oceans, atmosphere and shallow crust of the Earth has been intensively studied, but little is known about what happens to carbon deep in the Earth.

"We are trying to understand more about whether carbon can be transported in the deep Earth through water-rich fluids," said coauthor Dimitri Sverjensky, professor of earth and planetary sciences at Johns Hopkins University.

There is plenty of water in the mantle, the layer of the planet extending hundreds of miles below the Earth's crust, but little is known about how water behaves under the extreme conditions there—pressures run to hundreds of tons per square inch and temperatures are over 2,500 F.

Experiments reproducing these conditions are very hard to do, said Giulia Galli, professor of chemistry and physics at UC Davis and co-author on the paper. Geochemists have models to understand the deep Earth, but they have lacked a crucial parameter for water under these conditions: the dielectric constant, which determines how easily minerals will dissolve in water.

"When people use models to understand the Earth, they need to put in the dielectric constant of water—but there are no data at these depths," Galli said.

Galli and Sverjensky are collaborators in the Deep Carbon Observatory, supported by the Alfred P. Sloan Foundation, which seeks to understand the role of carbon in deep in the Earth.

Researchers have speculated that carbon, trapped as carbonate in the shells of tiny , sinks to the ocean floor and gets carried into the mantle on sinking crustal plates then is recycled and escapes through volcanoes, Sverjensky said. But there has been no mechanism to explain how this might happen.

Ding Pan, a postdoctoral researcher at UC Davis, used of water to predict how it behaves under and temperature. The simulations show that the dielectric constant changes significantly. By bringing that new factor into the existing models of water in the mantle, the researchers predict that magnesium carbonate, which is insoluble at the Earth's surface, would at least partially dissolve in water at that depth.

"It has been thought that this remains solid, but we show that at least part of it can dissolve and could return to the surface, possibly through volcanoes," Sverjensky said. "Over geologic timescales, a lot of material can move this way."

Sverjensky said the new modeling work was a "first step" to understanding how carbon deep in the Earth can return to the surface.

Explore further: Tropical depression 21W forms, Philippines under warnings

Related Stories

Hydrocarbons in the deep earth

Apr 15, 2011

(PhysOrg.com) -- A new computational study published in the Proceedings of the National Academy of Sciences reveals how hydrocarbons may be formed from methane in deep Earth at extreme pressures and temper ...

Diamonds show depth extent of Earth's carbon cycle

Sep 15, 2011

Scientists have speculated for some time that the Earth's carbon cycle extends deep into the planet's interior, but until now there has been no direct evidence. The mantle–Earth's thickest layer –is ...

Carbonates make diamonds grow in the Earth's mantle

Apr 08, 2011

Diamonds that no-one ever sees can form deep in the Earth’s interior. This is due to the chemical conditions controlling the associated carbon cycle. Swiss researchers used laboratory experiments to show ...

Recommended for you

Better forecasts for sea ice under climate change

Nov 25, 2014

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
1 / 5 (6) Mar 18, 2013
This is the new theory of carbon, recycled up from the deep. The vehicle for this recycling would have to have heat, possibly heat from the core. Neutrinos?
Whydening Gyre
1 / 5 (4) Mar 19, 2013
Possible. This research says properties of water changes under severe stress conditions - why not the iron core of the planet?
Graeme
not rated yet Mar 20, 2013
If there is plenty of water available at the core, it will react with iron to form iron hydride, and iron oxides.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.