The complexity of regulated development in plants

Mar 15, 2013
Four Arabidopsis FBX proteins (green, top and bottom rows) preferentially accumulate in speckled structures in the cytoplasm of protoplasts in leaves, outside of chloroplasts (red, middle and bottom rows). Credit: Kuroda et al.

In most living organisms, growth and development are controlled by selective modification of the lifespans of particular proteins. This mechanism is especially prevalent in plants, allowing rapid moderation of gene expression. Even the relatively streamlined Arabidopsis genome encodes more than 1,400 components of ubiquitin ligase complexes—molecular machines that are each able to single out a specific type of protein for degradation while sparing tens of thousands of others. However, the selectivity with which these hundreds of components assemble to form complexes has yet to be defined.

A team led by Minami Matsui from the Plant Functional Genomics Research Group at the RIKEN Plant Science Center has now begun to explore the diversity of the largest group of plant ubiquitin ligases—the SCF complexes—in Arabidopsis. Each plant SCF complex comprises four components, two of which are an ASK and an FBX protein. The Arabidopsis genome encodes an estimated 897 FBX and 21 ASK proteins. In their most recent work, the researchers investigated the locations of selected FBX and ASK proteins and their ability to interact with each other1.

Knowing the locations of proteins is equally as important as understanding their interaction, says Yuki Yanagawa from the research team. "After all, even if two proteins are capable of physical interaction, that's irrelevant in physiological terms if the proteins are found in different tissues or subcellular compartments."

The team used a yeast-based assay to map the physical affinities of each of the 341 Arabidopsis FBX proteins for each of the 19 ASK proteins. More than half the FBX proteins didn't interact with any of the ASK proteins tested, suggesting other components, SCF complexes or post-translational modifications might be needed to facilitate certain FBX–ASK interactions. A complementary experiment suggested, however, that the original assay may also have underestimated the capacities of certain FBX proteins to interact with ASKs.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: Kuroda, H. et al. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-LIKE (ASK) and F-Box (FBX) Proteins. PLoS One 7, e50009 (2012). dx.doi.org/10.1371/journal.pone.0050009

add to favorites email to friend print save as pdf

Related Stories

Cracking the plant-cell membrane code

Mar 22, 2010

(PhysOrg.com) -- To engineer better, more productive crops and develop new drugs to combat disease, scientists look at how the sensor-laden membranes surrounding cells control nutrient and water uptake, secrete ...

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

Preventing cancer development inside the cell cycle

Oct 21, 2011

Researchers from the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, have identified a cell cycle-regulated mechanism behind the transformation of normal cells into cancerous cells. The ...

Boon to plant science

Aug 30, 2010

In both plant and animal cells, protein activity is often regulated by phosphorylation, by which a phosphate group is added to one or more sites on a protein. A team led by Ken Shirasu of RIKEN Plant Science ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.