How cells optimize the functioning of their power plants

Mar 05, 2013

Mitochondria, which are probably derived from distant bacterial ancestors incorporated into our cells, have their own DNA. However, we know little about how these organelles, which convert oxygen and consumed nutrients into energy, regulate the expression of their own genes.

Jean-Claude Martinou, professor at the University of Geneva (UNIGE), Switzerland, and his team, have discovered the existence of compartments at the heart of , consisting of hundreds of different proteins. It is here that (the many copies made from DNA) come together to be processed and begin their maturation. Equipped with enzymatic hardware of all sorts, these assembly plants, named 'mitochondrial RNA granules', are described in the journal . Many pathologies associated with may be caused by dysfunctional mitochondrial RNA granules.

Mitochondria, present in varying numbers in each of our cells, are true . These organelles actually produce energy from the combustion of nutrients, to be used by the cell to perform its daily tasks. Unlike other cell organelles, which are only subject to the laws dictated by the cell's DNA, mitochondria possess their own genome. This is probably the result of a , which occured during the course of evolution, between their distant bacterial ancestors and cells of that time.

'All in one' transcription of DNA

Human mitochondrial DNA codes specifically for various proteins involved in the molecular equipment used to produce energy. This is transcribed into long RNA molecules - copies - which are comprised of both instructions for making proteins and the 'tools' to assemble them. This type of layout, in the form of an 'all in one kit', represents another bacterial.

"We don't really know how mitochondria regulate the expression of their genes. These long precursor RNA molecules, which do not exist anywhere else in the cell, must be processed in a distinctive way, with machinery specific to this organelle", reveals Jean-Claude Martinou, professor in the Department of Cell Biology, of the Faculty of Science. In collaboration with researchers from the University of Newcastle, his team has taken on the task of elucidating this type of structure.

Diseases linked to mutations in mitochondrial DNA

"Specifically, we tracked RNA molecules that we rendered fluorescent and observed their convergence and accumulation in previously unknown compartments" reports Alexis Jordan, a member of the group and first author of the article. "Made up of hundreds of different proteins, these are relatively large structures." Among these proteins are several enzymes known to play a role in the transformation of RNA into active entities. The RNA molecules gathered in these compartments are thus sliced into sections corresponding to their various components: the instructions for building each protein, and the various 'tools' used to assemble them.

"These assembly plants, which concentrate the machinery to process RNA, were baptized 'mitochondrial RNA granules'. It is now possible to explore in more detail the different stages of mitochondrial RNA and to understand its mechanism", explains Jean-Claude Martinou, an assertion whose importance is underlined by the fact that different pathologies are associated with dysfunctions in the processing of this RNA. The researchers intend to determine whether mutations in the RNA granule machinery are involved in the development of some of these diseases.

Explore further: Researchers uncover secrets of internal cell fine-tuning

add to favorites email to friend print save as pdf

Related Stories

The cells' petrol pump is finally identified

May 24, 2012

The oxygen and food we consume are converted into energy by tiny organelles present in each cell, the mitochondria. These 'power plants' must be continuously supplied with fuel, to maintain all vital functions. A team led ...

How mitochondrial DNA defects cause inherited deafness

Feb 17, 2012

(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed ...

Study finds how to correct human mitochondrial mutations

Mar 12, 2012

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial ...

Process important to brain development studied in detail

Nov 07, 2011

Knowledge about the development of the nervous system is of the greatest importance for us to understand the function of the brain and brain disorders. Researchers at Uppsala University have examined the key step when genes ...

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

10 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

11 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

17 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0