Catalysts' outer coordination spheres take their place in the spotlight

Mar 25, 2013
Catalysts' outer coordination spheres take their place in the spotlight
Wendy Shaw wrote a comprehensive review article on outer coordination spheres.

(Phys.org) —Once dismissed as shrubbery, experimental and computational research shows the outer coordination sphere greatly influences a catalyst's effectiveness, according to Dr. Wendy Shaw at Pacific Northwest National Laboratory in her invited review article. The outer coordination sphere is the complex structure that wraps around the catalyst's central active site and controls the activity, selectivity and specificity of the catalyst. Shaw's Catalysis Reviews article focuses on bottom-up design research. In this approach, aspects of the outer coordination sphere are added as needed.

"The advantage is that you can add just the features you need to get the effects you want," said Shaw.

In her article, Shaw explores studies of a minimal outer coordination sphere based on . She goes beyond these simple arrangements to examine structured peptide use. These more complex structures allow scientists to add specific positioning of an amino acid near the to change the molecular properties at the metal, controlling the catalyst's behavior. She also examines the newer area of enzyme mimics. She notes several exciting studies are using computers to design enzymes from scratch that catalyze reactions that aren't found in nature.

Looking back at the 61-page review, with 226 references, she notes that many of the catalysts fall into two categories: those that function but have undefined outer coordination spheres and those that do not work but have rigorously defined spheres. Few, such as a PNNL rhodium-based catalyst, perform the task at hand and have defined structures. For her, the takeaway message is the large influence that changes far from the active site can exert over the reactivity of the catalyst, and the power of integrating and experimentation to create functional and structurally characterized catalysts.

Explore further: Building the ideal rest stop for protons

More information: Shaw WJ. 2012. The Outer-Coordination Sphere: Incorporating Amino Acids and Peptides as Ligands for Homogeneous Catalysts to Mimic Enzyme Function. Catalysis Reviews 54(4):489-550. DOI: 10.1080/01614940.2012.679453

add to favorites email to friend print save as pdf

Related Stories

A personality change for a catalyst

Mar 07, 2011

For more than 40 years, an ambition of catalysis science has been to persuade homogeneous catalysts to behave more like heterogeneous catalysts, while still maintaining their activity and exquisite selectivity. Professor ...

SSRL contributes to platinum-based catalyst design

Aug 15, 2012

(Phys.org) -- Researchers from two SLAC-Stanford joint institutes, the Stanford Institute for Materials and Energy Sciences (SIMES) and the SUNCAT Center for Interface Science and Catalysis, recently joined ...

Recommended for you

Building the ideal rest stop for protons

10 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

12 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0