Catalysts' outer coordination spheres take their place in the spotlight

March 25, 2013
Catalysts' outer coordination spheres take their place in the spotlight
Wendy Shaw wrote a comprehensive review article on outer coordination spheres.

( —Once dismissed as shrubbery, experimental and computational research shows the outer coordination sphere greatly influences a catalyst's effectiveness, according to Dr. Wendy Shaw at Pacific Northwest National Laboratory in her invited review article. The outer coordination sphere is the complex structure that wraps around the catalyst's central active site and controls the activity, selectivity and specificity of the catalyst. Shaw's Catalysis Reviews article focuses on bottom-up design research. In this approach, aspects of the outer coordination sphere are added as needed.

"The advantage is that you can add just the features you need to get the effects you want," said Shaw.

In her article, Shaw explores studies of a minimal outer coordination sphere based on . She goes beyond these simple arrangements to examine structured peptide use. These more complex structures allow scientists to add specific positioning of an amino acid near the to change the molecular properties at the metal, controlling the catalyst's behavior. She also examines the newer area of enzyme mimics. She notes several exciting studies are using computers to design enzymes from scratch that catalyze reactions that aren't found in nature.

Looking back at the 61-page review, with 226 references, she notes that many of the catalysts fall into two categories: those that function but have undefined outer coordination spheres and those that do not work but have rigorously defined spheres. Few, such as a PNNL rhodium-based catalyst, perform the task at hand and have defined structures. For her, the takeaway message is the large influence that changes far from the active site can exert over the reactivity of the catalyst, and the power of integrating and experimentation to create functional and structurally characterized catalysts.

Explore further: Soft landing metal-based molecules create active, easy-to-separate catalyst

More information: Shaw WJ. 2012. The Outer-Coordination Sphere: Incorporating Amino Acids and Peptides as Ligands for Homogeneous Catalysts to Mimic Enzyme Function. Catalysis Reviews 54(4):489-550. DOI: 10.1080/01614940.2012.679453

Related Stories

A personality change for a catalyst

March 7, 2011

For more than 40 years, an ambition of catalysis science has been to persuade homogeneous catalysts to behave more like heterogeneous catalysts, while still maintaining their activity and exquisite selectivity. Professor ...

SSRL contributes to platinum-based catalyst design

August 15, 2012

( -- Researchers from two SLAC-Stanford joint institutes, the Stanford Institute for Materials and Energy Sciences (SIMES) and the SUNCAT Center for Interface Science and Catalysis, recently joined forces to investigate ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.