Breakthrough could lead to drugs that better combat 'superbugs'

March 1, 2013 by Jen Salazar
Breakthrough could lead to drugs that better combat 'superbugs'
NDM-1, present in a number of pathogenic bacteria, including Klebsiella pneumonia and Escherichia coli, is able to defeat many of the world’s most widely used antibiotics, including penicillin derivatives, cephalosporins, monobactams and carbapenems.

(—In the never-ending battle between antibiotic developers and the bacteria they fight, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have made a key breakthrough that could allow for the development of new drugs to more effectively combat antibiotic-resistant "superbugs."

An Argonne team led by Youngchang Kim of the Structural Biology Center, in collaboration with researchers from the Midwest Center for , the University of Texas-Pan American and Texas A&M University, recently determined the structure of NDM-1, a harmful able to overcome several antibiotics. The team used a combination of X-ray crystallography at Argonne's Advanced Photon Source (APS), biochemical assays, and computational modeling using resources at two Texas universities.

NDM-1, present in a number of pathogenic , including Klebsiella pneumonia and Escherichia coli, is able to defeat many of the world's most widely used antibiotics, including penicillin derivatives, cephalosporins, monobactams and carbapenems. The enzyme works by effectively binding to and breaking – in a process known as hydrolysis – a structure called a β-lactam ring, which is necessary for antibiotics to function.

The traditional view of enzymes, particularly those most essential for the bacteria to survive, is that they have a very specific substrate (or target – in this case the antibiotic) to bind and act on, and they interact with this target directly by forming a well-fitted lock-and-key-like complex. However NDM-1, and others like it, can act on a broad range of substrates.

"These kinds of enzymes can recognize many different targets," said Andrzej Joachimiak, head of Argonne's Structural Biology Center and the Midwest Center for Structural Genomics. 

"The appearance of NDM-1 among pathogenic bacteria represents a major concern because the enzyme can inactivate so many of the antibiotics that we use to treat infections," said Charles Edmonds of the National Institutes of Health's National Institute of General Medical Sciences, which partially supported the study. "This work, by providing a detailed understanding of the structure of the enzyme and its mechanism of action, brings an invaluable tool to the design of to combat this significant threat to public health."

The act of NDM-1 binding to the antibiotic, however, does not represent the entire story, because for the enzyme to effectively overcome the antibiotic, it must also cleave the β-lactam ring. The researchers found that certain metals, including zinc, manganese and cadmium, can bind to the NDM-1 active site – and to the β-lactam ring. While zinc provides the most favorable environment for cleavage to occur, cadmium tends to inhibit the enzyme's ability to cleave the ring.

"The next step in the research is to look for inhibitors that we can create that would block the functioning of the enzyme," Joachimiak said.  "If we can stop the enzyme from cutting the ring, the antibiotics stand a much better chance of staying effective."

The results of the research were recently published in The FASEB Journal in an article titled "NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism."

Explore further: The structure of resistance

Related Stories

The structure of resistance

February 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

New knowledge will boost fight against superbug

September 7, 2011

A breakthrough in the fight against drug-resistant infections is one step closer following the discovery of the structure of NDM-1: a vicious form of bacteria that is currently resistant to the most powerful antibiotics available.

Decoding the proteins behind drug-resistant superbugs

September 16, 2011

Penicillin and its descendants once ruled supreme over bacteria. Then the bugs got stronger, and hospitals have reported bacterial infections so virulent that even powerful antibiotics held in reserve for these cases don't ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.