Biodiesel algae: Starvation diets damage health

March 11, 2013

It may be better to tolerate lower oil content in algae grown for biodiesel to boost growth and overall productivity, says research from the University of Sheffield.

The research shows that the commonly accepted method of depriving algae of key nutrients such as nitrogen in order to boost its oil content may be detrimental to overall oil yield in the long term.

"Total oil production depends not just on the of the but how quickly the cells grow and multiply," says Dr Stephen Wilkinson of the University's Department of Chemical and . "We found you get more oil production overall if you give the algae all nutrients they need to grow fast rather than trying to increase the oil in each cell by limiting the availability of nitrogen."

In a study funded by the Carbon Trust and US consulting engineering firm MWH Global, Dr Wilkinson, along with colleagues from the University of Manchester, examined a species of algae called Dunaliella salina at different cell densities grown at a range of temperatures to determine the rate of growth and lipid production.

Some samples were deprived of nitrogen, whilst others were allowed to grow naturally. During the course of the 4-week study the overall yield from the nitrogen starved crops was in fact lower than many of the crops that had been allowed to grow naturally.

Another key finding of the study was that productivity could also be increased by increasing cell density. The researchers used to create more crowded algal cultures and were surprised to see that this these samples could still grow very well.

"Large-scale production of algal biofuels will need big ponds taking up a lot of space," says Dr Wilkinson, "so anything we can do to squeeze more oil out of a smaller land area is very important."

The study is published in the Journal of and Biotechnology.

Explore further: New sources of biofuel to take pressure off traditional crops

More information: Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis, DOI: 10.1002/jctb.4027

Related Stories

New sources of biofuel to take pressure off traditional crops

September 10, 2009

"Salt-loving algae could be the key to the successful development of biofuels as well as being an efficient means of recycling atmospheric carbon dioxide", Professor John Cushman of the University of Nevada told the Society ...

Algae biodiesel production has to be three times cheaper

October 1, 2010

The cost of producing biodiesel from algae is now three and a half times more than producing it from oil, and twice as much as producing fuel from rapeseed. Investments in biotechnology would however make it feasible for ...

More than mere pond scum

April 25, 2011

( -- Algae could soon become a valuable biofuel resource, according to research at the University of Arizona.

Carbon is key for getting algae to pump out more oil

June 18, 2012

( -- Overturning two long-held misconceptions about oil production in algae, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory show that ramping up the microbes’ overall metabolism ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.