Biochemists gain new insight into double-protected dance of cell division

Mar 05, 2013
New insight into double-protected dance of cell division
Biochemists at UMass Amherst recently revealed how two proteins shelter each other in "mutually assured cleanup" to insure that cell division proceeds smoothly. Credit: Peter Chien, UMass Amherst

Biochemists at the University of Massachusetts Amherst including assistant professor Peter Chien recently gained new insight into how protein synthesis and degradation help to regulate the delicate ballet of cell division. In particular, they reveal how two proteins shelter each other in "mutually assured cleanup" to insure that division goes smoothly and safely.

Cells must routinely dispose of leftover proteins with the aid of proteases that cut up and recycle used proteins. The problem for biochemists is that the same can be toxic garbage at one time, but essential for function at another time such as during the cell cycle, that is, events that unfold to achieve of and division of the cell.

As Chien explains, "We know that a process that has to happen as reliably and stably as cell division also has to be flexible enough to allow the organism to grow and respond to its ever-changing environment. We're interested in uncovering all the steps and back-up safeguards that cells use to robustly protect replication while at the same time allowing other functions to proceed." Results appear in the early online edition of .

To do this work, Amber Cantin in Chien's lab, closely collaborated with Michael Laub and colleagues at MIT to look in a bacteria, Caulobacter, where they had previously figured out how cells distinguish waste proteins from useful molecules. They focused on a protein called CtrA that sits on DNA like a cap, controlling replication until conditions are right for division to occur.

Destruction of CtrA allows cells to start replicating their chromosome. Cantin used biochemical experiments with highly purified proteins to show that CtrA was only degraded when it was bound to DNA and that another protein, SciP, could help make CtrA bind better to DNA, making CtrA more resistant to proteolysis.

Surprisingly, this also made SciP less able to be destroyed as well, showing that both proteins prevent their own destruction by protecting each other. In addition, while both proteins were destroyed, they were recognized by completely different . These advances, along with current findings, may offer medical researchers a clue for understanding diseases such as abnormal cell cycle progression in cancer.

Explore further: Blocking a fork in the road to DNA replication

Related Stories

Novel protein critical for cellular proliferation discovered

Oct 07, 2010

Accurate duplication of genetic material and the faithful segregation of chromosomes are critical for cell survival. The initiation of DNA replication is linked both to cell cycle progression and chromatin organization. In ...

Biologists identify proteins vital to chromosome segregation

Dec 24, 2012

New York University biologists have identified how a vital protein is loaded by others into the centromere, the part of the chromosome that plays a significant role in cell division. Their findings shed new light on genome ...

'Birth control' for centrioles

Jan 26, 2009

Like DNA, centrioles need to duplicate only once per cell cycle. Rogers et al. uncover a long-sought mechanism that limits centriole copying, showing that it depends on the timely demolition of a protein that ...

Recommended for you

Researchers capture picture of microRNA in action

5 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

7 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

10 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

10 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.