Researchers shed light on ancient origin of life

Mar 07, 2013 by April Reese Sorrow

(Phys.org) —University of Georgia researchers discovered important genetic clues about the history of microorganisms called archaea and the origins of life itself in the first ever study of its kind. Results of their study shed light on one of Earth's oldest life forms.

"Archaea are an ancient form of microorganisms, so everything we can learn about them could help us to answer questions about the ," said William Whitman, a microbiology professor in the Franklin College of Arts and Sciences and co-author on the paper.

Felipe Sarmiento, lead author and doctoral student in the microbiology department, surveyed 1,779 genes found in the genome of Methanococcus maripaludis, aquatic archaea commonly found in sea marshes, to determine if they were essential or not and learn more about their functions. He found that roughly 30 percent, or 526 genes, were essential. We now know which genes are driving the most important functions of the cell. The results of the study were published March 4 in the PNAS Early Edition and were performed with Jan Mrázek, an associate professor in the department of microbiology and the UGA Institute of Bioinformatics.

Although archaea are relatively simple organisms, the genetic systems they use to build are similar to those of more complicated found in complex organisms including animals and plants. For this reason, many scientists believe that eukaryotes evolved from ancient archaea.

These genetic systems are what allow information coded on DNA to build life.

"DNA by itself is a rock," Whitman said. "You need all these other systems to make the DNA become a living cell."

Because DNA is so fundamental to the modern cell, has long been thought to be one of the most conserved processes in .

"It was a surprise when this study found that the system for making DNA was unique to the archaea," Whitman said. "Learning that it can change in the archaea suggest that ability to make DNA formed late in the evolution of life. Possibly, there may be unrecognized differences in DNA biosynthesis the eukaryotes or bacteria as well."

Other essential genes in these archaea are necessary for methane production. Methanogensis, or the process of making methane gas, is how these microorganisms make energy for life.

"Humans burn glucose and reduce oxygen to water, these guys burn hydrogen gas and reduce CO2 to methane," Whitman explained.

Methanogenesis requires six vitamins not commonly found in other organisms. Understanding how these vitamins are made and how they are involved in the process of changing carbon dioxide to methane sheds light on developing new and better processes for methane production for fuel.

"This was a general investigation, but there are many questions it can answer, like possibly making better or more efficiently," Whitman said.

The study yielded many other important results.

"We found 121 proteins that are essential for this organism that we know nothing about," Sarmiento said. "This finding asks questions about their functions and the specific roles that they are playing."

"We are starting to get some insights about how this organism was actually formed," Sarmiento said. "There is a lot of information and it is interesting because it gives insights into a complete domain of ."

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: The journal article is availabe at www.pnas.org/content/early/201… 225110.full.pdf+html.

Related Stories

Strange diet for methane consuming microorganisms

Nov 06, 2012

Methane is formed under the absence of oxygen by natural biological and physical processes, e.g. in the sea floor. It is a much more powerful greenhouse gas than carbon dioxide. Thanks to the activity of ...

New insight into first life

Oct 04, 2010

(PhysOrg.com) -- New genome research at Oxford University could change the way scientists view our evolution.

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.