Ames' E. coli small satellite study selected for flight

Mar 26, 2013
A computer design drawing of ECamSat shows the body of the 14.4 inches long, 8.9 inches wide and 3.9 inches tall satellite. Credit: NASA Ames

NASA's CubeSat Launch Initiative (CSLI) recently selected E. coli AntiMicrobial Satellite (EcAMSat) as one of 24 small satellites to fly as secondary payloads aboard rockets planned to launch in 2014, 2015 and 2016.

EcAMSat is being developed through a partnership between NASA's Ames Research Center and the Stanford University School of Medicine. It will be the first in the "6U" configuration, with six times the volume of a single unit ("1U"). Cubesats belong to a class of research spacecraft called nanosatellites. The cube-shaped satellites measure about four inches on each side, have a volume of about one quart, and weigh less than three pounds. Though it is large for a nanosatellite, the 6U EcAMSat weighs only about 30 pounds and measures approximately 14.4 inches long, 8.9 inches wide and 3.9 inches tall.

"The development and flight of EcAMSat will mark Ames' eighth nanosatellite mission since 2006," said David Korsmeyer, director of engineering at NASA Ames. "Ames leads nanosatellite work within NASA, and is actively working within the government, academia and industry on developing and standardizing the 6U cubesat format, including the associated adapters and dispensers."

The 6U format enhances nanosatellite applicability for by providing more power and volume for instruments, avionics, actuators and propulsion. The larger format improves payload accommodation and extends mission duration capabilities, while still retaining its ability to be launched as a secondary payload.

The primary scientific purpose of the EcAMSat mission is to investigate how and whether space microgravity affects the antibiotic resistance of E. coli, a responsible for urinary tract infection in humans and animals. may pose a danger to astronauts in microgravity, where the immune response is weakened. Scientists believe that the results of this experiment could help design effective countermeasures to protect astronauts' health during long-duration human space missions.

"Small satellites provide effective and economical means for the current project aimed at understanding the genetic basis of increased of bacterial pathogens under microgravity," said A.C. Matin, principal investigator for this study and a professor of microbiology and immunology at the Stanford School of Medicine. "The planned experiments will determine the role of bacterial innate resistance in antibiotic tolerance, revealing the identity of proteins that can be targeted for increasing antibiotic effectiveness and countering the serious problem of bacterial drug resistance, which appears to be especially marked in microgravity."

After launch EcAMSat will be deployed from a specialized dispenser also designed and developed at NASA Ames, called the 6U Nanosatellite Launch Adapter System Dispenser. EcAMSat then will spend a minimum of 45 days in low-Earth orbit completing the experiment and relaying data to the ground.

EcAMSat was competitively selected for development by NASA's Space Life and Physical Sciences Division in 2010 and awarded to NASA Ames and the Stanford University School of Medicine. In addition to the selection of EcAMSat, NASA Ames also has been chosen for CSLI missions in 2011 – for the Lightsail mission - and 2012 – for the SporeSat mission, which is currently scheduled for launch in September 2013.

Explore further: Astronauts to reveal sobering data on asteroid impacts

More information: For additional information on NASA's CubeSat Launch Initiative program, visit: www.nasa.gov/directorates/heo/home/CubeSats_initiative.html

For information about NASA Ames' continuing small satellite and cubesat missions, visit: www.nasa.gov/centers/ames/missions/index.html
and www.nasa.gov/centers/ames/engineering/

For more information about NASA Ames, visit: www.nasa.gov/ames

add to favorites email to friend print save as pdf

Related Stories

NASA announces new CubeSat space mission candidates

Feb 27, 2013

NASA has selected 24 small satellites, including three from NASA's Jet Propulsion Laboratory in Pasadena, Calif., to fly as auxiliary payloads aboard rockets planned to launch in 2014, 2015 and 2016. The ...

Student-built satellite to prepare NASA instrument

Oct 26, 2011

(PhysOrg.com) -- When the M-Cubed satellite, built by University of Michigan students, goes into orbit, it will become the first CubeSat to test a NASA instrument for major space missions. It is scheduled ...

O/OREOS reaches orbit, begins astrobiology experiments

Nov 23, 2010

(PhysOrg.com) -- The Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite managed by NASA's Ames Research Center, successfully launched at 5:25 p.m. PST on Friday, Nov. 19, 2010, from Alaska Aerospace ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

14 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

14 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

15 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...