Advance in re-engineering photosynthesis to make drugs, compounds or ingredients

March 6, 2013
Advance in re-engineering photosynthesis to make drugs, compounds or ingredients
The tiny packets of chlorophyll that make plants green have been re-engineered in an advance toward transforming plants into bio-factories that make ingredients for medicines, fabrics and fuels. Credit: iStockphoto/Thinkstock

Scientists are reporting an advance in re-engineering photosynthesis to transform plants into bio-factories that manufacture high-value ingredients for medicines, fabrics, fuels and other products. They report on the research in the journal ACS Synthetic Biology.

Poul Erik Jensen and colleagues explain that photosynthesis does more than transform carbon dioxide and water into sugar and oxygen and generate energy. That process also produces a wealth of natural chemical compounds, many of which have potential uses in medicines and other commercial products. However, evolution has compartmentalized those functions into two separate areas of plant cells. Chloroplasts, the packets of chlorophyll that make plants green, generate energy and produce sugar and oxygen. Another structure, the endoplasmic reticulum, produces a wide range of natural chemicals.

Their report describes breaking that evolutionary compartmentalization by relocating an entire needed for production of natural bioactive chemicals to the chloroplast. "This opens the avenue for light-driven synthesis of a vast array of other natural chemicals in the ," they say, citing key that would be ingredients in medications.

Advance in re-engineering photosynthesis to make drugs, compounds or ingredients

The article is titled "Redirecting Photosynthetic Reducing Power towards Bioactive Natural Product Synthesis."

Explore further: Electric shocks boost plants' production of commercially useful chemicals

More information: Redirecting Photosynthetic Reducing Power toward Bioactive Natural Product Synthesis, DOI: 10.1021/sb300128r

In addition to the products of photosynthesis, the chloroplast provides the energy and carbon building blocks required for synthesis of a wealth of bioactive natural products of which many have potential uses as pharmaceuticals. In the course of plant evolution, energy generation and biosynthetic capacities have been compartmentalized. Chloroplast photosynthesis provides ATP and NADPH as well as carbon sources for primary metabolism. Cytochrome P450 monooxygenases (P450s) in the endoplasmic reticulum (ER) synthesize a wide spectrum of bioactive natural products, powered by single electron transfers from NADPH. P450s are present in low amounts, and the reactions proceed relatively slowly due to limiting concentrations of NADPH. Here we demonstrate that it is possible to break the evolutionary compartmentalization of energy generation and P450-catalyzed biosynthesis, by relocating an entire P450-dependent pathway to the chloroplast and driving the pathway by direct use of the reducing power generated by photosystem I in a light-dependent manner. The study demonstrates the potential of transferring pathways for structurally complex high-value natural products to the chloroplast and directly tapping into the reducing power generated by photosynthesis to drive the P450s using water as the primary electron donor.

Related Stories

What makes a plant a plant?

June 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Plant power: The ultimate way to 'go green'?

February 2, 2012

Researchers are turning to plants and solar power in the search for new sources of renewable and sustainable energy that can support the transition from rapidly depleting fossil fuels to a bio-based society. An article published ...

'Sweet' chemicals from a 'green' raw material

September 19, 2012

The biobased world's traditional focus on producing fuels for cars, trucks and aircraft is quietly undergoing a major transition this summer toward production of chemicals needed for manufacture of hundreds of different consumer ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.