Six years in space for THEMIS: Understanding the magnetosphere better than ever

Feb 21, 2013 by Karen C. Fox
Earth is surrounded by a giant magnetic bubble, called the magnetosphere. Over six years in space, five spacecraft from the THEMIS mission have helped map out this area and improve our ability to predict dynamic space weather events – events that at their worst can impact satellites in space. Credit: NASA

(Phys.org)—On Earth, scientists can observe weather patterns, and more importantly can predict them, through the use of tens of thousands of weather observatories scattered around the globe. Up in the space surrounding Earth—a space that seethes with its own space weather made of speeding charged particles and constantly changing magnetic fields that can impact satellites – there are only a handful of spacecraft to watch for solar and magnetic storms. The number of observatories has been growing over the last six years, however. Today these spacecraft have begun to provide the first multipoint measurements to better understand space weather events as they move through space, something impossible to track with a single spacecraft.

Helping to anchor that team of spacecraft is a called THEMIS (Time History of Events and Macroscale Interactions during Substorms). THEMIS launched on Feb. 17, 2007, with five nearly identical spacecraft nestled inside a Delta II rocket. Simply orchestrating how to expel each of the five satellites without unbalancing the rocket was an engineering tour de force – but it was only the preamble. Over time, each spacecraft moved into formation to fly around Earth in a highly- that would have them travelling through all parts of Earth's weather environment, a giant magnetic bubble called the . With five different observatories, scientists could watch space weather unfold in a way never before possible.

In its sixth year in space, scientific papers using THEMIS data helped highlight a number of crucial details about what causes in this complex system.

"Scientists have been trying to understand what drives changes in the magnetosphere since the 1958 discovery by James Van Allen that Earth was surrounded by rings of radiation," says David Sibeck, project scientist for THEMIS at NASA's Goddard Space Flight Center in Greenbelt, Md. "Over the last six years, in conjunction with other key missions such as Cluster and the recently launched Van Allen Probes to study the radiation belts, THEMIS has dramatically improved our understanding of the magnetosphere."

Since that 1958 discovery, observations of the radiation belts and near Earth space have shown that in response to different kinds of activity on the sun, energetic particles can appear almost instantaneously around Earth, while in other cases they can be wiped out completely. Electromagnetic waves course through the area too, kicking particles along, pushing them ever faster, or dumping them into the Earth's atmosphere. The bare bones of how particles and waves interact have been described, but with only one spacecraft traveling through a given area at a time, it's impossible to discern what causes the observed changes during any given event.

"Trying to understand this very complex system over the last 40 years has been quite difficult," says Vassilis Angelopoulos, the principal investigator for THEMIS at the University of California in Los Angeles (UCLA). "But very recently we have learned how even small variations in the solar wind – which buffets Earth's space environment at a million miles an hour—can sometimes cause extreme responses, causing more particles to arrive or to be lost."

Near Earth, THEMIS has now traveled through more than 50 solar storms that caused particles in the outer radiation belts to either increase or decrease in number. Historically, it has been difficult for scientists to find commonalities between such occurrences and discover what, if anything consistently caused an enhancement or a depletion. With so many events to study, however, and a more global view of the system from several spacecraft working together – including, in this case, ground based observations and NOAA's GOES (Geostationary Operational Environment Satellites) and POES (Polar Operational Environmental Satellites) data in addition to THEMIS data – a team of scientists led by Drew Turner at UCLA could better characterize what processes caused which results.

Turner's group recently presented evidence linking specific kinds of electromagnetic waves in space – waves that are differentiated based on such things as their frequencies, whether they interact with ions or electrons, and whether they move along or across the background magnetic fields – to different effects. Chorus waves, so called because when played through an amplifier they sound like a chorus of singing birds, consistently sped up particles, leading to an increase in particle density. On the other hand, two types of waves known as hiss and EMIC (Electromagnetic Ion Cyclotron) waves occurred in those storms that showed particle depletion. Turner also observed that when incoming activity from the sun severely pushed in the boundaries of the magnetosphere this, too, led to particle drop outs, or sudden losses throughout the system. Such information is helpful to those attempting to forecast changes in the radiation belts, which if they swell too much can encompass many of our spacecraft.

An artist's concept of the THEMIS spacecraft orbiting around Earth. Credit: NASA

Another group has a paper in print in 2013 based on 2008 data from the five THEMIS spacecraft in conjunction with three of NOAA's GOES (Geostationary Operational Environmental Satellites) spacecraft, and the ESA/NASA Cluster mission. Led by Michael Hartinger at the University of Michigan in Ann Arbor, this group compared observations at the bow shock where the supersonic solar wind brakes to flow around the magnetosphere to what happens inside the magnetosphere. They found that instabilities drive perturbations in the solar wind particles streaming towards the bow shock and that these perturbations can be correlated with another type of magnetized wave – ULF (ultra low frequency) waves—inside the magnetosphere. ULF waves, in turn, are thought to be important for changes in the radiation belts.

"The interesting thing about this paper is that it shows how the magnetosphere actually gets quite a bit of energy from the solar wind, even by seemingly innocuous rotations in the magnetic field," says Angelopoulos. "People hadn't realized that you could get waves from these types of events, but there was a one-to-one correspondence. One THEMIS spacecraft saw an instability at the bow shock and another THEMIS spacecraft then saw the waves closer to Earth."

Since all the various waves in the magnetosphere are what can impart energy to the particles surrounding Earth, knowing just what causes each kind of wave is yet another important part of the space weather puzzle.

A third interesting science paper from THEMIS's sixth year focused on features originating even further upstream in the solar wind. Led by Galina Korotova at IZMIRAN in Troitsk, Russia, this work made use of THEMIS and GOES data to observe the magnetosphere boundary, the magnetopause. The researchers addressed how seemingly small perturbations in the solar wind can have large effects near Earth. Wave-particle interactions in the solar wind in the turbulent region upstream from the bow shock act as a gate valve, dramatically changing the bow shock orientation and strength directly in front of Earth, an area that depends critically on the orientation. The extreme bow shock variations cause undulations throughout the magnetopause, which, launch pressure perturbations that may in turn energize particles in the Van Allen radiation belts.

All of this recent work helps illuminate the nitty gritty details of how seemingly small changes in a system can lead to large variations in the near-Earth space environment where so many important technologies – including science, weather, GPS and communications satellites all reside.

Much of this work was based on data from when all five spacecraft were orbiting Earth. Beginning in the fall of 2010, however, two of the THEMIS spacecraft were moved over the course of nine months to observe the environment around the moon. These two satellites were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun). In their new position, the two ARTEMIS spacecraft spend 80% of their time directly observing the , offering a vantage point on this area outside our magnetosphere that is quite close to home.

The THEMIS spacecraft continue to work at their original levels of operation and all the instruments function highly effectively. With their current positioning and the ability to work in conjunction with other nearby spacecraft, scientists look forward to the stream of data yet to come.

"What we have with THEMIS and ARTEMIS and the Van Allen Probes, is a whole constellation we are developing in near-Earth space," says Turner. "It's crucial for developing our forecasting ability and getting a better sense of the system as a whole."

THEMIS is the fifth medium-class mission under NASA's Explorer Program, which was conceived to provide frequent flight opportunities for world-class scientific investigations from space within the Heliophysics and Astrophysics science areas. The Explorers Program Office at Goddard manages this -funded mission. The University of California, Berkeley's Space Sciences Laboratory and Swales Aerospace in Beltsville, Md., built the THEMIS probes.

Explore further: DNA survives critical entry into Earth's atmosphere

More information: For more information about the associated missions, visit:

add to favorites email to friend print save as pdf

Related Stories

ARTEMIS spacecraft believed stuck by object

Oct 25, 2010

Flight Dynamics data from THEMIS-B (one of the two ARTEMIS spacecraft) indicated that one of the EFI (electric field instrument)spherical tip masses may have been struck by a meteoroid at 0605 UT on October ...

THEMIS satellite sees a great electron escape

Jan 31, 2012

(PhysOrg.com) -- When scientists discovered two great swaths of radiation encircling Earth in the 1950s, it spawned over-the-top fears about "killer electrons" and space radiation effects on Earthlings. The ...

New NASA mission ready to brave Earth's radiation belts

Aug 10, 2012

(Phys.org) -- NASA's Radiation Belt Storm Probes (RBSP) mission will send two spacecraft into the harsh environment of our planet's radiation belts. Final preparations have begun for launch on Thursday, Aug. ...

Recommended for you

DNA survives critical entry into Earth's atmosphere

11 hours ago

The genetic material DNA can survive a flight through space and re-entry into the earth's atmosphere—and still pass on genetic information. A team of scientists from UZH obtained these astonishing results ...

Team develops cognitive test battery for spaceflight

12 hours ago

Space is one of the most demanding and unforgiving environments. Human exploration of space requires astronauts to maintain consistently high levels of cognitive performance to ensure mission safety and success, and prevent ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
1 / 5 (2) Feb 21, 2013
observing the high energy yet thin whispy dynamic magnetic plasma sheaths is a fundmental form of near earth meteorology and we qre JUST opening mankinds eyes to this findamental object of observation. this is likely a centuries long endeavor.
rubberman
not rated yet Feb 21, 2013
Good representation of the fields in the visual at the top.
vidyunmaya
1 / 5 (1) Feb 24, 2013
sub: advance-forward-Necessity
THEMIS has contributed very well in providing new perspective Change-desirable for space weather and environment. plasma Regulated Electromagnetic phenomena in magnetic Field Environment-offers new challenges- Space Science needs to move forward.
Following helpful reports have been provided to ESA groups along with two books-by Dec 2010. SPACE VISION-OM-COSMOLOGICAL INDEX-By Vidyardhi Nanduri-TXU 1-731-970 - SPACE SCIENCE-Reports Cover [ESA]-2010- Environment-Sensex-Earth-Glow-Sun Life-Significance - Human Being in-depth-Milky-way Sensex-Aditya links
1.ENVIRONMENT SENSEX-EARTH'S GLOW-SUN-LIFE SIGNIFICANCE -
SPACE VISION-OM-COSMOLOGICAL INDEX-2010-
2.SUN TO ADITYA-COSMOLOGY VEDAS INTERLINKS
REGN.NO :TXU 1-731-970 DEC13,2010-ISBN : 978-93-82184-26-3

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.