Violent Nabro eruption shown to pierce stratosphere

Feb 08, 2013
A natural-color image of the Nabro eruption captured June 13, 2011, by the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) shows the volcanic ash plume extending from the Eritrea-Ethiopia border, west-north-westerly, into Sudan. Nabro is a stratovolcano in the northeast African nation of Eritrea and is one of many volcanic caldera complexes in the northeasternmost part of the East African Rift valley region. Credit: NASA Earth Observatory

(—Researchers from the U.S. Naval Research Laboratory Ocean and Atmospheric Science and Technology Directorate report conclusive evidence that volcanic gases and aerosols from the explosive 2011 eruption of the East Africa Nabro Volcano breached the stratosphere, unassisted by the seasonal Asian monsoonal flow.

On June 12, 2011, the Nabro Volcano explosively erupted, forcing sulfur dioxide (SO2) gas and volcanic aerosols high into the atmosphere. Prior analyses had suggested the Nabro plume reached the stratosphere only after being transported through a tropospheric meteorological phenomenon associated with the circulation.

"There is overwhelming satellite evidence that the Nabro caused a sizable and direct volcanic impact on the stratosphere," said Mike Fromm, NRL research meteorologist. "Robust satellite data indisputably indicate and particles penetrated the stratosphere during the initial eruption and a second eruption three days later."

Thermal infrared (IR) imagery captured by the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite two hours after the eruption provides overwhelming evidence of a deep convective umbrella cloud with locally in a peripheral arc and warmer temperatures near the cloud center, a signature of violent convection associated with breaches in the .

To characterize the Nabro plume, NRL scientists use three instruments from NASA's 'A-Train' constellation—a series of quasi-simultaneous nadir and limb viewing measurement satellites that orbit Earth one behind the other. MODIS, onboard the satellite Aqua, acquires spectral data on global dynamics and processes occurring on land, in oceans, and in the atmosphere. The Ozone Monitoring Instrument (OMI), onboard the Aura satellite, distinguishes between aerosol types such as smoke, dust, and sulfates, and measures data to derive ozone. The Microwave Limb Sounder (MLS), also onboard Aura, provides measurements of atmospheric composition, temperature, humidity, and cloud ice. Data taken from the OMI shortly after the eruption indicate scattering volcanic aerosols such as liquid sulfate droplets and SO2. Observations from MODIS IR cloud-top temperatures revealed that an optically opaque volcanic cloud covers the same area as the OMI AI plume with a minimum IR brightness temperature of minus 78 degrees Celsius, a lower stratospheric value.

MODIS IR cloud-top temperature on June 13, 2011 reveals that the optically opaque volcanic cloud covers the same area as the OMI AI plume. The minimum IR brightness temperature of this cloud is -78°C (dark red) which according to the environmental temperature profile suggests an opaque cloud as high as 16 kilometers. UV backscatter sensors such as OMI are sensitive cannot 'see through' optically thick clouds. Hence the signal of scattering aerosols sulfur dioxide (SO2) is originating from altitudes above this high cloud top. The opaque cloud surface also guarantees that no information from the troposphere below is obtainable. Credit: U.S. Naval Research Laboratory

"Ultraviolet backscatter sensors such as OMI are sensitive and cannot 'see through' optically thick clouds, indicating the signal of scattering aerosols and sulfur dioxide originated from altitudes above this high cloud top," says Fromm. "The opaque cloud surface also guarantees that no information from the troposphere below is obtainable."

The day after the eruption, height-resolved SO2 data retrieved from the MLS also exhibited strong stratospheric SO2 enhancements to an altitude of nearly 63,000 feet, or approximately 19 kilometers. Hence, the SO2 profile data corroborate the high injection heights suggested by the combined OMI/MODIS imagery. Additionally, a back trajectory launched from a June 19 MLS SO2 observation shows that the stratospheric SO2 plume moves from the Mideast and Africa through mid-latitude Asia to the Pacific Ocean, never encountering the Asian Monsoon—a progression consistent with the region's recorded prevailing winds.

These data convincingly show a classic Plinian characterization of the Nabro June 13 eruption defined by volcanic aerosols and other gases being injected into the stratosphere.

Explore further: NASA's HS3 mission spotlight: The HIRAD instrument

add to favorites email to friend print save as pdf

Related Stories

Satellite looks down the eye of erupting Nabro Volcano

Jun 28, 2011

Wow! What an amazing and detailed top-down view of an active volcano! This is the Nabro Volcano, which has been erupting since June 12, 2011. It sits in an isolated region on the border between Eritrea and ...

Satellite data improve aviation safety

Apr 16, 2010

( -- Thousands of planes are grounded across Europe due to the spread of volcanic ash following the recent eruption under Iceland's Eyjafjallajoekull glacier. Volcanic eruptions eject large amounts ...

Recommended for you

Fires in Central Africa During July 2014

10 hours ago

Hundreds of fires covered central Africa in mid-July 2014, as the annual fire season continues across the region. Multiple red hotspots, which indicate areas of increased temperatures, are heavily sprinkled ...

NASA's HS3 mission spotlight: The HIRAD instrument

20 hours ago

The Hurricane Imaging Radiometer, known as HIRAD, will fly aboard one of two unmanned Global Hawk aircraft during NASA's Hurricane Severe Storm Sentinel or HS3 mission from Wallops beginning August 26 through ...

Fires in the Northern Territories July 2014

Jul 23, 2014

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

User comments : 0